Polyphosphazene (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Polyphosphazene" in German language version.

refsWebsite
Global rank German rank
2nd place
3rd place
800th place
160th place
207th place
961st place

doi.org

  • P. Potin, R. De Jaeger: Polyphosphazenes: Synthesis, structures, properties, applications. In: Eur. Polym. J. Band 27, Nr. 4–5, 1991, S. 341–348, doi:10.1016/0014-3057(91)90185-Q.
  • S.Y. Cho, H.R. Allcock: Dendrimers Derived from Polyphosphazene−Poly(propyleneimine) Systems:  Encapsulation and Triggered Release of Hydrophobic Guest Molecules. In: Macromolecules. Band 40, Nr. 9, 2007, S. 3115–3121, doi:10.1021/ma062582w.
  • H.R. Allcock, R.L. Kugel: Synthesis of high polymeric alkoxy- and aryloxyphosphonitriles. In: J. Amer. Chem. Soc. Band 87, Nr. 18, 1965, S. 4216–4217, doi:10.1021/ja01096a056.
  • R.J. Davidson, E.W. Ainscough, A.M. Brodie, M.R. Waterland, H.R. Allcock, M.D. Hindenlang, G.N.L. Jameson: Avoiding Crosslinking in Iron-Polyphosphazene Metallo-Polymers. In: Inorg. Chem. Commun. Band 51, 2015, S. 1–3, doi:10.1016/j.inoche.2014.10.011.
  • R. Koci Voznicova, J. Taraba, J. Prihoda, M. Alberti: The synthesis and characterization of new aminoadamantane derivatives of hexachloro-cyclo-triphosphazene. In: Polyhedron. Band 27, 2008, S. 2077–2082, doi:10.1016/j.poly.2008.04.001.
  • A.K. Andrianov, J. Chen, M.P. LeGolvan: Poly(dichlorophosphazene) as a precursor for biologically active polyphosphazenes:  Synthesis, characterization, and stabilization. In: Macromolecules. Band 37, Nr. 2, 2004, S. 414–420, doi:10.1021/ma0355655.
  • T.L. Evans, H.R. Allcock: Poly(difluorophosphazene): A new intermediate for the synthesis of poly(organophosphazenes). In: J. Macromol. Sci., Chem. Band 16, Nr. 1, 1981, S. 409–423, doi:10.1080/00222338108082059.
  • H.R. Allcock, D.B. Patterson, T.L. Evans: Synthesis of Open‑Chain Poly(difluorophosphazene) and its Reactions with Alkoxides. In: Macromolecules. Band 12, Nr. 2, 1979, S. 172–177, doi:10.1021/ma60068a002.
  • H.R. Allcock, C.A. Crane, C.T. Morrissey, J.M. Nelson, S.D. Reeves, C.H. Honeyman: “Living” cationic polymerization of phosphoranimines as an ambient temperatur route to polyphosphazenes with controlled molecular weight. In: Macromolecules. Band 29, Nr. 24, 1996, S. 7740–7747, doi:10.1021/ma960876j.
  • H.R. Allcock, R. Prange: Properties of Poly(phosphazene−siloxane) Block Copolymers Synthesized via Telechelic Polyphosphazenes and Polysiloxane Phosphoranimines. In: Macromolecules. Band 34, Nr. 20, 2001, S. 6858–6865, doi:10.1021/ma010088g.
  • Y. Cui, X. Tang, X. Huang, Y. Chen: Synthesis of the star-shaped copolymer of epsilon-caprolactone and L-lactide from a cyclotriphosphazene. In: Biomacromolecules. Band 4, Nr. 6, 2003, S. 1491–1494, doi:10.1021/bm034237+.
  • R.A. Montague, K. Matyjaszewski: Synthesis of Poly[bis(trifluoroethoxy)phosphazene under mild conditions using a fluoride initiator. In: J. Amer. Chem. Soc. Band 112, Nr. 18, 1990, S. 6721–6723, doi:10.1021/ja00174a047.
  • R.D. Chapman, M.F. Welker, C.R. Kreutzberger: Polyalkoxyphosphazenes by room-temperature polymerization of an electronegative phosphoranimine monomer. In: J. Inorg. Organomet. Polym. Band 6, Nr. 3, 1996, S. 267–275, doi:10.1007/BF01057751.
  • H.R. Allcock, R.L. Kugel, K.J. Valan: Phosphonitrilic compounds. VI. High molecular weight poly(alkoxy and aryloxy-phosphazene). In: Inorg. Chem. Band 5, Nr. 10, 1966, S. 1709–1715, doi:10.1021/ic50044a016.
  • H.R. Allcock, R.L. Kugel: Phosphonitrilic compounds. VII. High molecular weight poly(diaminophosphazenes). In: Inorg. Chem. Band 5, Nr. 10, 1966, S. 1716–1718, doi:10.1021/ic50044a017.
  • H.R. Allcock, C.T.-W. Chu: Reaction of Phenyllithium with Poly(dichlorophosphazene). In: Macromolecules. Band 12, Nr. 4, 1979, S. 551–555, doi:10.1021/ma60070a003.
  • R.H. Neilson, P. Wisian-Neilson: Poly(alkyl/arylphosphazenes) and their precursors. In: Chem. Rev. Band 88, Nr. 3, 1988, S. 541–562, doi:10.1021/cr00085a005.
  • K. Matyjaszewski, M. Cypryk, J. Dauth, R.A. Montague, M.L. White: New synthetic routes towards polyphosphazenes. In: Makromol. Chem. Macromol. Sym. Band 54–55, Nr. 1, 1992, S. 13–30, doi:10.1002/masy.19920540105.
  • K. Matyjaszewski, U. Franz, R.A. Montague, M.L. White: Synthesis of polyphosphazenes from phosphoranimines and phosphine azides. In: Polymer. Band 35, Nr. 23, 1994, S. 5005–5011, doi:10.1016/0032-3861(94)90656-4.
  • O. Nuyken, S.T. Pask: Ring-opening polymerization – An introductory review. In: Polymers. Band 5, 2013, S. 361–403, doi:10.3390/polym5020361.
  • V. Chandrasekhar: Inorganic and Organometallic Polymers. Springer, 2005, ISBN 3-540-22574-9, doi:10.1007/b137079.
  • H.R. Allcock, N.L. Morozowich: Bioerodible polyphosphazenes and their medical potential. In: Polym. Chem. Band 3, 2012, S. 578–590, doi:10.1039/C1PY00468A.
  • H.R. Allcock, G.S. McDonnell, J.L. Desorcie: Synthesis of new polyphosphazene elastomers. In: Macromolecules. Band 23, Nr. 17, 1990, S. 3873–3877, doi:10.1021/ma00219a001.
  • A.L. Weikel, D.K. Lee, N.R. Krogman, H.R. Allcock: Phase changes of poly(alkoxyphosphazenes), and their behavior in the presence of oligoisobutylene. In: Polym. Eng. Sci. Band 51, 2011, S. 1693–1700, doi:10.1022/pen.21623.
  • A. Singh, L. Steely, H.R. Allcock: Poly[bis(2,2,2-trifluoroethoxy)phosphazene] superhydrophobic nanofibers. In: Langmuir. Band 21, Nr. 25, 2005, S. 11604–11607, doi:10.1021/la052110v.
  • H. Kawakami, S. Kanezaki, M. Sudo, M. Kanno, S. Nagaoka, S. Kubota: Biodegradation and Biocompatibility of Polyorganophosphazene. In: Artificial Organs. Band 26, 2002, S. 883–890, doi:10.1046/j.1525-1594.2002.07029.x.
  • H.R. Allcock, N.J. Sunderland, R. Ravikiran, J.M. Nelson: Polyphosphazenes with Novel Architectures:  Influence on Physical Properties and Behavior as Solid Polymer Electrolytes. In: Macromolecules. Band 31, Nr. 23, 1998, S. 8026–8035, doi:10.1021/ma9804491.
  • S. Jankowsky, M.M. Hiller, H.-D. Wiemhöfer: Preparation and electrochemical performance of polyphosphazene based salt-in-polymer electrolyte membranes for lithium ion batteries. In: J. Power Sources. Band 253, 2014, S. 256–262, doi:10.1016/j.powsour.2013.11.120.
  • X. Zhou, J. Weston, E. Chalkova, M.A. Hofmann, C.M. Ambler, H.R. Allcock, S.N. Lvov: High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells. In: Electrochim. Acta. Band 48, Nr. 14–16, 2003, S. 2173–2180, doi:10.1016/S0013-4686(03)00201-9.
  • R. Wycisk, P.N. Pintauro: Polyphosphazene membranes for fuel cells. In: Adv. Polym. Sci. Band 216, 2008, S. 157–183, doi:10.1007/12_2007_130.
  • C.J. Orme, F.F. Stewart: Mixed gas hydrogen sulfide permeability and separation using supported polyphosphazene membranes. In: J. Membrane Sci. Band 253, Nr. 1–2, 2005, S. 243–249, doi:10.1016/j.memsci.2004.12.034.
  • F.F. Stewart, M.K. Harrup, T.A. Luther, C.J. Orme, R.P. Lash: Formation of pervaporation membranes from polyphosphazenes having hydrophilic and hydrophobic pendant groups: Synthesis and characterization. In: J. Appl. Polym. Sci. Band 80, 2001, S. 422–431, doi:10.1002/1097-4628(20010418)80:3<422::AID-APP1115>3.0.CO;2-H.
  • H.R. Allcock, S. Kwon, G.H. Riding, R.J. Fitzpatrick, J.L. Bennett: Hydrophilic polyphosphazenes as hydrogels: radiation cross-linking and hydrogel characteristics of poly [bis (methoxyethoxyethoxy)phosphazene]. In: Biomaterials. Band 9, Nr. 6, 1988, S. 509–513, doi:10.1016/0142-9612(88)90046-4.
  • H.R. Allcock: Crosslinking reactions for the conversion of polyphosphazenes into useful materials. In: Chem. Mater. Band 6, Nr. 9, 1994, S. 1476–1491, doi:10.1021/cm00045a003.
  • Z. Huang, X. Liu, S. Chen, Q. Lu, G. Sun: Injectable and cross-linkable polyphosphazene hydrogels for space-filling scaffolds. In: Polym. Chem. Band 6, 2015, S. 143–149, doi:10.1039/C4PY00967C.
  • A.K. Andrianov, S. Cohen, K.B. Visscher, L.G. Payne, H.R. Allcock, R. Langer: Controlled release using ionotropic polyphosphazene hydrogels. In: J. Control. Release. Band 27, Nr. 1, 1993, S. 69–77, doi:10.1016/0168-3659(93)90058-D.
  • H.R. Allcock, N. Morozowich: Bioerodible polyphosphazenes and their medical potential. In: Polym. Chem. Band 3, 2012, S. 578–590, doi:10.1039/C1PY00468A.
  • I. Teasdale, S. Wilfert, I. Nischang, O. Brüggemann: Multifunctional and biodegradable polyphosphazenes for use as macromolecular anti-cancer drug carriers. In: Polym. Chem. Band 2, 2011, S. 828–834, doi:10.1039/C0PY00321B.
  • I. Teasdale, O. Brüggemann: Polyphosphazenes: Multifunctional, Biodegradable Vehicles for Drug and Gene Delivery. In: Polymers. Band 5, 2013, S. 161–187, doi:10.3390/polym5010161.
  • A.L. Baillargeon, K. Mequanint: Biodegradable polyphosphazene biomaterials for tissue engineering and delivery of therapeutics. In: BioMed Res. Int. 2014. Article ID 761373, doi:10.1155/2014/761373.
  • M. Deng u. a.: Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering. In: Biomaterials. Band 31, Nr. 18, 2010, S. 4898–4908, doi:10.1016/j.biomaterials.2010.02.058.
  • N.L. Morozowich, J.L. Nichol, H.R. Allcock: Investigation of apatite mineralization on antioxidant polyphosphazenes for bone tissue engineering. In: Chem. Mater. Band 24, Nr. 17, 2012, S. 3500–3509, doi:10.1021/cm3022825.
  • M. Deng, S.G. Kumar, Y. Wan, U.S. Toti, H.R. Allcock, C.T. Laurencin: Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications. In: Soft Matter. Band 6, 2010, S. 3119–3132, doi:10.1039/B926402G.
  • S. Rothemund u. a.: Degradable glycine-based photo-polymerizable polyphosphazenes for use as scaffolds for tissue regeneration. In: Macromol. Biosci. 2014, S. 1–13, doi:10.1002/mabi.201400390.
  • H. Rose: Ueber eine Verbindung des Phosphors mit dem Stickstoff. In: Ann. Pharm. Band 11, 1834, S. 129–139, doi:10.1002/jlac.18340110202.
  • J. Liebig: Nachtrag der Redaction. In: Ann. Pharm. Band 11, 1834, S. 139–150, doi:10.1002/jlac.18340110202.

espacenet.com

worldwide.espacenet.com

  • Patent US3231327: Preparation of N-Dichlorophosphinyl-imidophosphoric trichloride. Angemeldet am 13. November 1961, veröffentlicht am 25. Januar 1966, Anmelder: FMC Corp., Erfinder: L. Seglin, M.R. Lutz, H. Stange.
  • Patent US5132389: Polycondensation of impure P2NOCl5 into uncrosslinked Poly(dichlorophosphazenes) in the presence of PCl5. Angemeldet am 22. Oktober 1990, veröffentlicht am 21. Juli 1992, Anmelder: Atochem, Erfinder: R. de Jaeger, G. D’Halluin, G. Pagniez, P. Potin.
  • Patent US4198381: Process for preparing low molecular weight linear phosphonitrilic chloride oligomers. Angemeldet am 21. August 1978, veröffentlicht am 15. April 1980, Anmelder: Ethyl Corp., Erfinder: E.D. Hornbaker, H.M. Li.
  • Patent US5698664: Synthesis of polyphosphazenes with controlled molecular weight and polydispersity. Angemeldet am 26. April 1995, veröffentlicht am 16. Dezember 1997, Anmelder: The Penn State Research Foundation, University of Toronto, Erfinder: H.R. Allcock, C.T. Morrissey, I. Manners, C.H. Honeyman.
  • Patent US8075916B2: Poly(organophosphazene) hydrogels for drug delivery, preparation method thereof and use thereof. Angemeldet am 14. Juni 2007, veröffentlicht am 13. Dezember 2011, Anmelder: KIST Korea Institute of Science and Technology, Erfinder: S.-C. Song, M.-R. Park, S.-M. Lee.

psu.edu

personal.psu.edu