Problem des Handlungsreisenden (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Problem des Handlungsreisenden" in German language version.

refsWebsite
Global rank German rank
2nd place
3rd place
123rd place
6th place
3,153rd place
5,754th place
1,185th place
2,009th place
69th place
189th place
4,448th place
8,140th place
low place
5,598th place
610th place
521st place
833rd place
1,717th place
8,650th place
low place
low place
low place
8,706th place
low place
193rd place
559th place
7th place
19th place

acm.org

dl.acm.org

  • C. E. Miller, A. W. Tucker, R. A. Zemlin: Integer Programming Formulation of Traveling Salesman Problems. In: Journal of the ACM. Band 7, Nr. 4, Oktober 1960, ISSN 0004-5411, S. 326–329, doi:10.1145/321043.321046 (acm.org [PDF; abgerufen am 15. Januar 2024]).
  • Sanjeev Arora: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. In: Journal of the ACM. Band 45, Nr. 5, September 1998, ISSN 0004-5411, S. 753–782, doi:10.1145/290179.290180 (acm.org [abgerufen am 31. Dezember 2024]).
  • Joseph S. B. Mitchell: Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k -MST, and Related Problems. In: SIAM Journal on Computing. Band 28, Nr. 4, Januar 1999, ISSN 0097-5397, S. 1298–1309, doi:10.1137/S0097539796309764 (acm.org [PDF; abgerufen am 31. Dezember 2024]).

arxiv.org

concordia.ca

users.encs.concordia.ca

doi.org

  • René van Bevern, Viktoriia A. Slugina: A historical note on the 3/2-approximation algorithm for the metric traveling salesman problem. In: Historia Mathematica. Mai 2020, doi:10.1016/j.hm.2020.04.003, arxiv:2004.02437 (elsevier.com).
  • David L. Applegate, Robert E. Bixby, Vašek Chvátal, William Cook, Daniel G. Espinoza, Marcos Goycoolea, Keld Helsgaun: Certification of an optimal TSP tour through 85,900 cities. In: Operations Research Letters. Band 37, Nr. 1, Januar 2009, ISSN 0167-6377, S. 11–15, doi:10.1016/j.orl.2008.09.006 (uwaterloo.ca [PDF; abgerufen am 18. Januar 2024]).
  • András Sebö, Jens Vygen: Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica 34 (5) (2014), 597-629, (doi:10.1007/s00493-011-2960-3)
  • G. Dantzig, R. Fulkerson, S. Johnson: Solution of a Large-Scale Traveling-Salesman Problem. In: Journal of the Operations Research Society of America. Band 2, Nr. 4, November 1954, ISSN 0096-3984, S. 393–410, doi:10.1287/opre.2.4.393 (dtic.mil [PDF; abgerufen am 15. Januar 2024]).
  • C. E. Miller, A. W. Tucker, R. A. Zemlin: Integer Programming Formulation of Traveling Salesman Problems. In: Journal of the ACM. Band 7, Nr. 4, Oktober 1960, ISSN 0004-5411, S. 326–329, doi:10.1145/321043.321046 (acm.org [PDF; abgerufen am 15. Januar 2024]).
  • Pjotr Berman, Marek Karpinski, 8/7-approximation algorithm for (1,2)-TSP, Proceedings SODA '06, pp. 641-648. doi:10.1145/1109557.1109627
  • Marek Karpinski, Michael Lampis, and Richard Schmied, New Inapproximability Bounds for TSP, appeared in Algorithms and Computation - 24th International Symposium, ISAAC 2013, pp. 568-578, 2013, doi:10.1007/978-3-642-45030-3
  • Marek Karpinski, Richard Schmied: Approximation hardness of graphic TSP on cubic graphs. In: RAIRO - Operations Research. Band 49, Nr. 4, 1. Oktober 2015, ISSN 0399-0559, S. 651–668, doi:10.1051/ro/2014062, arxiv:1304.6800 (numdam.org [abgerufen am 31. Dezember 2024]).
  • Sanjeev Arora: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. In: Journal of the ACM. Band 45, Nr. 5, September 1998, ISSN 0004-5411, S. 753–782, doi:10.1145/290179.290180 (acm.org [abgerufen am 31. Dezember 2024]).
  • Joseph S. B. Mitchell: Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k -MST, and Related Problems. In: SIAM Journal on Computing. Band 28, Nr. 4, Januar 1999, ISSN 0097-5397, S. 1298–1309, doi:10.1137/S0097539796309764 (acm.org [PDF; abgerufen am 31. Dezember 2024]).
  • Nach Rosenkrantz, D.J.; Stearns, R.E.; Lewis, P.M. "Approximate algorithms for the traveling salesperson problem", Conference on Switching and Automata Theory, 1974. doi:10.1109/SWAT.1974.4

dtic.mil

apps.dtic.mil

  • G. Dantzig, R. Fulkerson, S. Johnson: Solution of a Large-Scale Traveling-Salesman Problem. In: Journal of the Operations Research Society of America. Band 2, Nr. 4, November 1954, ISSN 0096-3984, S. 393–410, doi:10.1287/opre.2.4.393 (dtic.mil [PDF; abgerufen am 15. Januar 2024]).

elsevier.com

linkinghub.elsevier.com

gatech.edu

www2.isye.gatech.edu

tsp.gatech.edu

klassik-stiftung.de

haab-digital.klassik-stiftung.de

  • Der Handlungsreisende – wie er sein soll und was er zu thun hat, um Aufträge zu erhalten und eines glücklichen Erfolgs in seinen Geschäften gewiß zu sein – von einem alten Commis-Voyageur. Verlag von B. Fr. Voigt, Ilmenau 1832, S. 188–203, Digitalisat

numdam.org

nytimes.com

ruc.dk

akira.ruc.dk

uwaterloo.ca

math.uwaterloo.ca

wired.com

zdb-katalog.de

  • David L. Applegate, Robert E. Bixby, Vašek Chvátal, William Cook, Daniel G. Espinoza, Marcos Goycoolea, Keld Helsgaun: Certification of an optimal TSP tour through 85,900 cities. In: Operations Research Letters. Band 37, Nr. 1, Januar 2009, ISSN 0167-6377, S. 11–15, doi:10.1016/j.orl.2008.09.006 (uwaterloo.ca [PDF; abgerufen am 18. Januar 2024]).
  • G. Dantzig, R. Fulkerson, S. Johnson: Solution of a Large-Scale Traveling-Salesman Problem. In: Journal of the Operations Research Society of America. Band 2, Nr. 4, November 1954, ISSN 0096-3984, S. 393–410, doi:10.1287/opre.2.4.393 (dtic.mil [PDF; abgerufen am 15. Januar 2024]).
  • C. E. Miller, A. W. Tucker, R. A. Zemlin: Integer Programming Formulation of Traveling Salesman Problems. In: Journal of the ACM. Band 7, Nr. 4, Oktober 1960, ISSN 0004-5411, S. 326–329, doi:10.1145/321043.321046 (acm.org [PDF; abgerufen am 15. Januar 2024]).
  • Marek Karpinski, Richard Schmied: Approximation hardness of graphic TSP on cubic graphs. In: RAIRO - Operations Research. Band 49, Nr. 4, 1. Oktober 2015, ISSN 0399-0559, S. 651–668, doi:10.1051/ro/2014062, arxiv:1304.6800 (numdam.org [abgerufen am 31. Dezember 2024]).
  • Sanjeev Arora: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. In: Journal of the ACM. Band 45, Nr. 5, September 1998, ISSN 0004-5411, S. 753–782, doi:10.1145/290179.290180 (acm.org [abgerufen am 31. Dezember 2024]).
  • Joseph S. B. Mitchell: Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k -MST, and Related Problems. In: SIAM Journal on Computing. Band 28, Nr. 4, Januar 1999, ISSN 0097-5397, S. 1298–1309, doi:10.1137/S0097539796309764 (acm.org [PDF; abgerufen am 31. Dezember 2024]).
  • Keld Helsgaun: An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic. (PDF; 646 kB) In: European Journal of Operational Research. Amsterdam 126.2000, Nr. 1, S. 106–130. ISSN 0377-2217