Whitby F. G., E. I. Masters, L. Kramer, J. R. Knowlton, Y. Yao, C. C. Wang and C. P. Hill: Structural basis for the activation of 20S proteasomes by 11S regulators. In: Nature. Band408, Nr.6808, S.115–120, doi:10.1038/35040607, PMID 11081519.
Osmulski P. A., M. Hochstrasser and M. Gaczynska: A Tetrahedral Transition State at the Active Sites of the 20S Proteasome Is Coupled to Opening of the α-Ring Channel. In: Structure. Band17, Nr.8, 2009, S.1137–1147, doi:10.1016/j.str.2009.06.011, PMID 19679091.
Wehmer M., T. Rudack, F. Beck, A. Aufderheide, G. Pfeifer, J. M. Plitzko, F. Förster, K. Schulten, W. Baumeister and E. Sakata: Structural insights into the functional cycle of the ATPase module of the 26S proteasome. In: Proceedings of the National Academy of Sciences of the United States of America. Band114, Nr.6, Februar 2017, S.1305–1310, doi:10.1073/pnas.1621129114, PMID 28115689.
Groll M., L. Ditzel, J. Löwe, D. Stock, M. Bochtler, H. D. Bartunik and R. Huber: Structure of 20S proteasome from yeast at 2.4Å resolution. In: Nature. Band386, Nr.6624, April 1997, S.463–71, doi:10.1038/386463a0, PMID 9087403.
Lasker K., F. Förster, S. Bohn, T. Walzthoeni, E. Villa, P. Unverdorben, F. Beck, R. Aebersold, A. Sali and W. Baumeister: Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. In: Proceedings of the National Academy of Sciences of the United States of America. Band109, Nr.5, Januar 2012, S.1380-7, doi:10.1073/pnas.1120559109, PMID 22307589.
Lander G. C., E. Estrin, M. E. Matyskiela, C. Bashore, E. Nogales and A. Martin: Complete subunit architecture of the proteasome regulatory particle. In: Nature. Band482, Nr.7384, Februar 2012, S.186–191, doi:10.1038/nature10774, PMID 22237024.
Arrigo, A.-P., K. Tanaka, A. L. Goldberg, and W. J. Welch: Identity of the 19S “prosome” particle with the large multifunctional protease complex of mammalian cells (the proteasome). In: Nature. Band331, Nr.6152, Januar 1988, S.192–194, doi:10.1038/331192a0, PMID 3277060.
Groettrup, M., R. Kraft, S. Kostka, S. Standera, R. Stohwasser, and P. M. Kloetzel: A third interferon-gamma-induced subunit exchange in the 20S proteasome. Band26, Nr.4, April 1996, S.863–9, doi:10.1002/eji.1830260421, PMID 8625980.
Murata, S., K. Sasaki, T. Kishimoto, S.-I. Niwa, H. Hayashi, Y. Takahama, and K. Tanaka: Regulation of CD8+ T cell development by thymus-specific proteasomes. In: Science. Band316, Nr.5829, Juni 2007, S.1349-53, doi:10.1126/science.1141915, PMID 17540904.
Seifert U., Bialy L.P., Ebstein F., Bech-Otschir D., Voigt A., Schröter F., Prozorovski T., Lange N., Steffen J., Rieger M., Kuckelkorn U., Aktas O., Kloetzel P.M. and E. Krüger: Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. In: Cell. Band142, Nr.4, August 2010, S.613–24, doi:10.1016/j.cell.2010.07.036, PMID 20723761.
Beling A. and M. Kespohl: Proteasomal Protein Degradation: Adaptation of Cellular Proteolysis With Impact on Virus– and Cytokine-Mediated Damage of Heart Tissue During Myocarditis. In: Frontiers in Immunology. Band9, Nr.2620, November 2018, S.eCollection 2018, doi:10.3389/fimmu.2018.02620, PMID 30546359.
Nathan J.A., Spinnenhirn V., Schmidtke G., Basler M., Groettrup M. and A.L. Goldberg: Immuno- and constitutive proteasomes do not differ in their abilities to degrade ubiquitinated proteins. In: Cell. Band152, Nr.5, Februar 2013, S.1184-94, doi:10.1016/j.cell.2013.01.037, PMID 23452861.
Schmidt C., T. Berger, M, Groettrup and M. Basler: Immunoproteasome Inhibition Impairs T and B Cell Activation by Restraining ERK Signaling and Proteostasis. In: Frontiers in Immunology. Band9, Nr.2386, Oktober 2018, S.eCollection 2018, doi:10.3389/fimmu.2018.02386, PMID 30416500.
Kincaid E. Z., S. Murata, K. Tanaka, K. L. Rock: Specialized proteasome subunits have an essential role in the thymic selection of CD8(+) T cells. In: Nature Immunology. Band17, Nr.8, August 2016, S.938–945, doi:10.1038/ni.3480, PMID 27294792, PMC 4955723 (freier Volltext).
Aichem A., S. Anders, N. Catone, P. Rößler, S. Stotz, A. Berg, R. Schwab, S. Scheuermann, J. Bialas, M. C. Schütz-Stoffregen, G. Schmidtke, C. Peter, M. Groettrup and S. Wiesner: The structure of the ubiquitin-like modifier FAT10 reveals an alternative targeting mechanism for proteasomal degradation. In: Nature Communications. Band9, Nr.1, August 2018, doi:10.1038/s41467-018-05776-3, PMID 30127417.
Ben-Nissan G. and M. Sharon: Regulating the 20S Proteasome Ubiquitin-Independent Degradation Pathway. In: Biomolecules. Band4, Nr.3, September 2014, S.862–884, doi:10.3390/biom4030862, PMID 25250704.
Zhang Y., J. Nicholatos, J.R. Dreier, S. J. H. Ricoult, S. B. Widenmaier, G. S. Hotamisligil, D. J. Kwiatkowski, B. D. Manning: Coordinated regulation of protein synthesis and degradation by mTORC1. In: Nature. Band513, Nr.7518, September 2014, S.440–3, doi:10.1038/nature13492, PMID 25043031.
Guo Q., C. Lehmer, A.Martínez-Sánchez, T. Rudack, F. Beck, H. Hartmann, M. Pérez-Berlanga, F. Frottin, M. S. Hipp, F. U. Hartl, D. Edbauer, W. Baumeister, R.Fernández-Busnadiego: In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates Reveals Proteasome Recruitment. In: Cell. Band172, Nr.4, Februar 2018, S.696–705.e12, doi:10.1016/j.cell.2017.12.030, PMID 29398115.
Kisselev A. F., W. A. van der Linden, H. S. Overkleeft: Proteasome Inhibitors: An Expanding Army Attacking a Unique Target. In: Chemistry & Biology. Band19, Nr.1, 2012, S.99–115, doi:10.1016/j.chembiol.2012.01.003, PMID 22284358.
Ito A., R. Takahashi, C. Muira, and Y. Baba: Synthetic Study of Peptide Aldehydes. In: Chemical and Pharmaceutical Bulletin. Band23, Nr.12, 1975, S.3106–3113, doi:10.1248/cpb.23.3106.
Satoshi Tsubuki, S., H. Kawasaki, Y. Saito, N. Miyashita, M. Inomata, and S. Kawashima: Purification and characterization of a Z-Leu-Leu-Leu-MCA degrading protease expected to regulate neurite formation: A novel catalytic activity in proteasome. In: Biochem. Biophys. Res. Commun. Band196, Nr.3, November 1993, S.1195-201, doi:10.1006/bbrc.1993.2378, PMID 8250877.
Suraweera A., C. Münch, A. Hanssum, A. Bertolotti: Failure of Amino Acid Homeostasis Causes Cell Death following Proteasome Inhibition. In: Molecular Cell. Band48, Nr.2, 2012, S.242–253, doi:10.1016/j.molcel.2012.08.003, PMID 22959274.
H. N. M. Ergin, Q. Huang, J. Qin, H. M. Amin, R. L. Martinez, S. Saeed, K.Barton, S. Alkan: Analysis of expression of nuclear factor κB (NF‐κB) in multiple myeloma: downregulation of NF‐κB induces apoptosis. In: British Journal of Haematology. Band115, Nr.2, Dezember 2001, S.279–86, doi:10.1046/j.1365-2141.2001.03102.x, PMID 11703322.
Niewerth D., G. Jansen, Y.G. Assaraf, S. Zweegman, G.J. Kaspers and J. Cloos.: Molecular basis of resistance to proteasome inhibitors in hematological malignancies. In: Drug Resistance Updates. Nr.18, 2015, S.18–35, doi:10.1016/j.drup.2014.12.001, PMID 25670156.
Cromm P. M. and C. M. Crews: The Proteasome in Modern Drug Discovery: Second Life of a Highly Valuable Drug Target. In: ACS Central Science. Band3, Nr.8, 2017, S.830–838, doi:10.1021/acscentsci.7b00252, PMID 28852696.
Basler M., M. M. Lindstrom, J. J. LaStant, J. M. Bradshaw, T. D. Owens, C. Schmidt, E. Maurits, C. Tsu, H. S. Overkleeft, C. J. Kirk, C. L. Langrish and M. Groettrup: Co-inhibition of immunoproteasome subunits LMP2 and LMP7 is required to block autoimmunity. In: EMBO reports. Oktober 2018, S.e46512, doi:10.15252/embr.201846512, PMID 30279279.
Johnson H. W. B., E. Lowe, J. L. Anderl, A. Fan, T. Muchamuel, S. Bowers, D. Moebius, C. Kirk and D. L. McMinn: A required immunoproteasome subunit inhibition profile for anti-inflammatory efficacy and clinical candidate KZR-616 ((2S,3R)-N-((S)-3-(cyclopent-1-en-1-yl)-1-((R)-2-methyloxiran-2-yl)-1-oxopropan-2-yl)-3-hydroxy-3-(4-methoxyphenyl)-2-((S)-2-(2-morpholinoacetamido)propanamido)propenamide). In: Journal of Medicinal Chemistry. Oktober 2018, doi:10.1021/acs.jmedchem.8b01201, PMID 30380863.
Althof N., C. C. Goetzke, M. Kespohl, K. Voss, A. Heuser, S. Pinkert, Z. Kaya, K. Klingel and A Beling: The immunoproteasome-specific inhibitor ONX 0914 reverses susceptibility to acute viral myocarditis. In: EMBO Molecular Medicine. Band10, Nr.2, Februar 2018, S.200–218, doi:10.15252/emmm.201708089, PMID 29295868.
Whitby F. G., E. I. Masters, L. Kramer, J. R. Knowlton, Y. Yao, C. C. Wang and C. P. Hill: Structural basis for the activation of 20S proteasomes by 11S regulators. In: Nature. Band408, Nr.6808, S.115–120, doi:10.1038/35040607, PMID 11081519.
Osmulski P. A., M. Hochstrasser and M. Gaczynska: A Tetrahedral Transition State at the Active Sites of the 20S Proteasome Is Coupled to Opening of the α-Ring Channel. In: Structure. Band17, Nr.8, 2009, S.1137–1147, doi:10.1016/j.str.2009.06.011, PMID 19679091.
Wehmer M., T. Rudack, F. Beck, A. Aufderheide, G. Pfeifer, J. M. Plitzko, F. Förster, K. Schulten, W. Baumeister and E. Sakata: Structural insights into the functional cycle of the ATPase module of the 26S proteasome. In: Proceedings of the National Academy of Sciences of the United States of America. Band114, Nr.6, Februar 2017, S.1305–1310, doi:10.1073/pnas.1621129114, PMID 28115689.
Groll M., L. Ditzel, J. Löwe, D. Stock, M. Bochtler, H. D. Bartunik and R. Huber: Structure of 20S proteasome from yeast at 2.4Å resolution. In: Nature. Band386, Nr.6624, April 1997, S.463–71, doi:10.1038/386463a0, PMID 9087403.
Lasker K., F. Förster, S. Bohn, T. Walzthoeni, E. Villa, P. Unverdorben, F. Beck, R. Aebersold, A. Sali and W. Baumeister: Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. In: Proceedings of the National Academy of Sciences of the United States of America. Band109, Nr.5, Januar 2012, S.1380-7, doi:10.1073/pnas.1120559109, PMID 22307589.
Lander G. C., E. Estrin, M. E. Matyskiela, C. Bashore, E. Nogales and A. Martin: Complete subunit architecture of the proteasome regulatory particle. In: Nature. Band482, Nr.7384, Februar 2012, S.186–191, doi:10.1038/nature10774, PMID 22237024.
Orlowski, N., and S. Wilk: A multicatalytical protease complex from pituitary that forms enkephalin and enkephalin containing peptides. In: Biochemical and Biophysical Research Communications. Band101, Nr.3, August 1981, S.814–22, PMID 7030330.
Arrigo, A.-P., K. Tanaka, A. L. Goldberg, and W. J. Welch: Identity of the 19S “prosome” particle with the large multifunctional protease complex of mammalian cells (the proteasome). In: Nature. Band331, Nr.6152, Januar 1988, S.192–194, doi:10.1038/331192a0, PMID 3277060.
Nandi D., H. Jiang, J.J. Monaco: Identification of MECL-1 (LMP-10) as the Third IFN-γ-lnducible Proteasome Subunit. In: Journal of Immunology. Band156, Nr.7, April 1996, S.2361-4, PMID 8786291.
Groettrup, M., R. Kraft, S. Kostka, S. Standera, R. Stohwasser, and P. M. Kloetzel: A third interferon-gamma-induced subunit exchange in the 20S proteasome. Band26, Nr.4, April 1996, S.863–9, doi:10.1002/eji.1830260421, PMID 8625980.
Murata, S., K. Sasaki, T. Kishimoto, S.-I. Niwa, H. Hayashi, Y. Takahama, and K. Tanaka: Regulation of CD8+ T cell development by thymus-specific proteasomes. In: Science. Band316, Nr.5829, Juni 2007, S.1349-53, doi:10.1126/science.1141915, PMID 17540904.
Seifert U., Bialy L.P., Ebstein F., Bech-Otschir D., Voigt A., Schröter F., Prozorovski T., Lange N., Steffen J., Rieger M., Kuckelkorn U., Aktas O., Kloetzel P.M. and E. Krüger: Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. In: Cell. Band142, Nr.4, August 2010, S.613–24, doi:10.1016/j.cell.2010.07.036, PMID 20723761.
Beling A. and M. Kespohl: Proteasomal Protein Degradation: Adaptation of Cellular Proteolysis With Impact on Virus– and Cytokine-Mediated Damage of Heart Tissue During Myocarditis. In: Frontiers in Immunology. Band9, Nr.2620, November 2018, S.eCollection 2018, doi:10.3389/fimmu.2018.02620, PMID 30546359.
Nathan J.A., Spinnenhirn V., Schmidtke G., Basler M., Groettrup M. and A.L. Goldberg: Immuno- and constitutive proteasomes do not differ in their abilities to degrade ubiquitinated proteins. In: Cell. Band152, Nr.5, Februar 2013, S.1184-94, doi:10.1016/j.cell.2013.01.037, PMID 23452861.
Schmidt C., T. Berger, M, Groettrup and M. Basler: Immunoproteasome Inhibition Impairs T and B Cell Activation by Restraining ERK Signaling and Proteostasis. In: Frontiers in Immunology. Band9, Nr.2386, Oktober 2018, S.eCollection 2018, doi:10.3389/fimmu.2018.02386, PMID 30416500.
Kincaid E. Z., S. Murata, K. Tanaka, K. L. Rock: Specialized proteasome subunits have an essential role in the thymic selection of CD8(+) T cells. In: Nature Immunology. Band17, Nr.8, August 2016, S.938–945, doi:10.1038/ni.3480, PMID 27294792, PMC 4955723 (freier Volltext).
Aichem A., S. Anders, N. Catone, P. Rößler, S. Stotz, A. Berg, R. Schwab, S. Scheuermann, J. Bialas, M. C. Schütz-Stoffregen, G. Schmidtke, C. Peter, M. Groettrup and S. Wiesner: The structure of the ubiquitin-like modifier FAT10 reveals an alternative targeting mechanism for proteasomal degradation. In: Nature Communications. Band9, Nr.1, August 2018, doi:10.1038/s41467-018-05776-3, PMID 30127417.
Ben-Nissan G. and M. Sharon: Regulating the 20S Proteasome Ubiquitin-Independent Degradation Pathway. In: Biomolecules. Band4, Nr.3, September 2014, S.862–884, doi:10.3390/biom4030862, PMID 25250704.
Zhang Y., J. Nicholatos, J.R. Dreier, S. J. H. Ricoult, S. B. Widenmaier, G. S. Hotamisligil, D. J. Kwiatkowski, B. D. Manning: Coordinated regulation of protein synthesis and degradation by mTORC1. In: Nature. Band513, Nr.7518, September 2014, S.440–3, doi:10.1038/nature13492, PMID 25043031.
Guo Q., C. Lehmer, A.Martínez-Sánchez, T. Rudack, F. Beck, H. Hartmann, M. Pérez-Berlanga, F. Frottin, M. S. Hipp, F. U. Hartl, D. Edbauer, W. Baumeister, R.Fernández-Busnadiego: In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates Reveals Proteasome Recruitment. In: Cell. Band172, Nr.4, Februar 2018, S.696–705.e12, doi:10.1016/j.cell.2017.12.030, PMID 29398115.
Kisselev A. F., W. A. van der Linden, H. S. Overkleeft: Proteasome Inhibitors: An Expanding Army Attacking a Unique Target. In: Chemistry & Biology. Band19, Nr.1, 2012, S.99–115, doi:10.1016/j.chembiol.2012.01.003, PMID 22284358.
Satoshi Tsubuki, S., H. Kawasaki, Y. Saito, N. Miyashita, M. Inomata, and S. Kawashima: Purification and characterization of a Z-Leu-Leu-Leu-MCA degrading protease expected to regulate neurite formation: A novel catalytic activity in proteasome. In: Biochem. Biophys. Res. Commun. Band196, Nr.3, November 1993, S.1195-201, doi:10.1006/bbrc.1993.2378, PMID 8250877.
Rock, K. L., C. Gramm, L. Rothstein, K. Clark, R. Stein, L. Dick, D. Hwang, and A. L. Goldberg: Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Band78, Nr.5, September 1994, S.761–771, PMID 8087844.
Suraweera A., C. Münch, A. Hanssum, A. Bertolotti: Failure of Amino Acid Homeostasis Causes Cell Death following Proteasome Inhibition. In: Molecular Cell. Band48, Nr.2, 2012, S.242–253, doi:10.1016/j.molcel.2012.08.003, PMID 22959274.
H. N. M. Ergin, Q. Huang, J. Qin, H. M. Amin, R. L. Martinez, S. Saeed, K.Barton, S. Alkan: Analysis of expression of nuclear factor κB (NF‐κB) in multiple myeloma: downregulation of NF‐κB induces apoptosis. In: British Journal of Haematology. Band115, Nr.2, Dezember 2001, S.279–86, doi:10.1046/j.1365-2141.2001.03102.x, PMID 11703322.
Ma M. H., H. H. Yang, K. Parker, S. Manyak, J. M. Friedman, C. Altamirano, Z. Wu, M. J. Borad, M. Frantzen, E. Roussos, J. Neeser, A.Mikail, J. Adams, N. Sjak-Shie, R. A. Vescio and J. R. Berenson: The Proteasome Inhibitor PS-341 Markedly Enhances Sensitivity of Multiple Myeloma Tumor Cells to Chemotherapeutic Agents. In: Clinical Cancer Research. Band9, Nr.3, März 2003, S.1136-44, PMID 12631619.
Niewerth D., G. Jansen, Y.G. Assaraf, S. Zweegman, G.J. Kaspers and J. Cloos.: Molecular basis of resistance to proteasome inhibitors in hematological malignancies. In: Drug Resistance Updates. Nr.18, 2015, S.18–35, doi:10.1016/j.drup.2014.12.001, PMID 25670156.
Cromm P. M. and C. M. Crews: The Proteasome in Modern Drug Discovery: Second Life of a Highly Valuable Drug Target. In: ACS Central Science. Band3, Nr.8, 2017, S.830–838, doi:10.1021/acscentsci.7b00252, PMID 28852696.
Basler M., M. M. Lindstrom, J. J. LaStant, J. M. Bradshaw, T. D. Owens, C. Schmidt, E. Maurits, C. Tsu, H. S. Overkleeft, C. J. Kirk, C. L. Langrish and M. Groettrup: Co-inhibition of immunoproteasome subunits LMP2 and LMP7 is required to block autoimmunity. In: EMBO reports. Oktober 2018, S.e46512, doi:10.15252/embr.201846512, PMID 30279279.
Johnson H. W. B., E. Lowe, J. L. Anderl, A. Fan, T. Muchamuel, S. Bowers, D. Moebius, C. Kirk and D. L. McMinn: A required immunoproteasome subunit inhibition profile for anti-inflammatory efficacy and clinical candidate KZR-616 ((2S,3R)-N-((S)-3-(cyclopent-1-en-1-yl)-1-((R)-2-methyloxiran-2-yl)-1-oxopropan-2-yl)-3-hydroxy-3-(4-methoxyphenyl)-2-((S)-2-(2-morpholinoacetamido)propanamido)propenamide). In: Journal of Medicinal Chemistry. Oktober 2018, doi:10.1021/acs.jmedchem.8b01201, PMID 30380863.
Althof N., C. C. Goetzke, M. Kespohl, K. Voss, A. Heuser, S. Pinkert, Z. Kaya, K. Klingel and A Beling: The immunoproteasome-specific inhibitor ONX 0914 reverses susceptibility to acute viral myocarditis. In: EMBO Molecular Medicine. Band10, Nr.2, Februar 2018, S.200–218, doi:10.15252/emmm.201708089, PMID 29295868.