Alexander A. Baykov, Anssi M. Malinen, Heidi H. Luoto, Reijo Lahti: Pyrophosphate-Fueled Na+ and H+ Transport in Prokaryotes. In: Microbiology and Molecular Biology Reviews. Band77, Nr.2, 2013, S.267–276, doi:10.1128/MMBR.00003-13 (englisch).
Tommi Kajandera, Juho Kellosalob, Adrian Goldman: Inorganic pyrophosphatases: One substrate, three mechanisms. In: FEBS Letters. Band587, Nr.13, 2013, S.1863–1869, doi:10.1016/j.febslet.2013.05.003 (englisch).
Heidi H. Luoto, Georgiy A. Belogurov, Alexander A. Baykov, Reijo Lahti, Anssi M. Malinen: Na+-translocating Membrane Pyrophosphatases Are Widespread in the Microbial World and Evolutionarily Precede H+-translocating Pyrophosphatases. In: Journal of Biological Chemistry. Band286, Nr.11, 2011, S.21633–21642, doi:10.1074/jbc.M111.244483 (englisch).
Toni Sivula, Anu Salminen, Alexey N. Parfenyev, Pekka Pohjanjoki, Adrian Goldman, Barry S. Cooperman, Alexander A. Baykov, Reijo Lahti: Evolutionary aspects of inorganic pyrophosphatase. In: FEBS Letters. Band454, Nr.1–2, 1999, S.75–80, doi:10.1016/S0014-5793(99)00779-6 (englisch).
A. Kunitz: Crystalline inorganic pyrophosphatase isolated from baker's yeast. In: The Journal of General Physiology. Band35, Nr.3, 1952, S.423–450, doi:10.1085/jgp.35.3.423 (englisch).
Lana J. McMillana, Nathaniel L. Hepowit, Julie A. Maupin-Furlow: Archaeal Inorganic Pyrophosphatase Displays Robust Activity under High-Salt Conditions and in Organic Solvents. In: Applied and Environmental Microbiology. Band82, Nr.2, 2016, S.538–548, doi:10.1128/AEM.03055-15 (englisch).
María R Gómez‐García, Manuel Losada, Aurelio Serrano: Comparative biochemical and functional studies of family I soluble inorganic pyrophosphatases from photosynthetic bacteria. In: FEBS Journal. Band274, Nr.15, 2007, S.3948–3959, doi:10.1111/j.1742-4658.2007.05927.x (englisch).
Marco Zancani, Valentino Casolo, Carlo Peresson, Giorgio Federici, Andrea Urbani, Francesco Macrı̀, Angelo Vianello: The β-subunit of pea stem mitochondrial ATP synthase exhibits PPiase activity. In: Mitochondrion. Band3, Nr.2, 2003, S.111–118, doi:10.1016/S1567-7249(03)00105-3 (englisch).
Chathurada S. Gajadeera, Xinyi Zhang, Yinan Wei, Oleg V. Tsodikov: Structure of inorganic pyrophosphatase from Staphylococcus aureus reveals conformational flexibility of the active site. In: Journal of Structural Biology. Band189, Nr.2, 2015, S.81–86, doi:10.1016/j.jsb.2014.12.003 (englisch).
Laura M. Barge, Ivria J. Doloboff, Michael J. Russell, David VanderVelde, Lauren M. White, Galen D. Stucky, Marc M. Baum, John Zeytounian, Richard Kidd, Isik Kanik: Pyrophosphate synthesis in iron mineral films and membranes simulating prebiotic submarine hydrothermal precipitates. In: Geochimica et Cosmochimica Acta. Band128, 2014, S.42705, doi:10.1016/j.gca.2013.12.006 (englisch).
Jennifer Moyle, Roy Mitchell, Peter Mitchell: Proton-translocating pyrophosphatase of Rhodospirillum rubrum. In: FEBS Letters. Band23, Nr.2, 1972, S.233–236, doi:10.1016/0014-5793(72)80349-1 (englisch).
Roberto Docampo, Wanderley de Souza, Kildare Miranda, Peter Rohloff, Silvia N. J. Moreno: Acidocalcisomes? conserved from bacteria to man. In: Nature Reviews Microbiology. Band3, Nr.3, 2005, S.251–261, doi:10.1038/nrmicro1097 (englisch).
Manfredo Seufferheld, Christopher R. Lea, Mauricio Vieira, Eric Oldfield, Roberto Docampo: The H+-pyrophosphatase of Rhodospirillum rubrum is predominantly located in Polyphosphate-rich Acidocalcisomes. In: Journal of Biological Chemistry. Band279, 2004, S.51193–51202, doi:10.1074/jbc.M406099200 (englisch).
Juho Kellosalo, Tommi Kajander, Konstantin Kogan, Kisun Pokharel, Adrian Goldman: The Structure and Catalytic Cycle of a Sodium-Pumping Pyrophosphatase. In: Science. Band337, Nr.6093, 2012, S.473–476, doi:10.1126/science.1222505 (englisch).
Shih-Ming Lin, Jia-Yin Tsai, Chwan-Deng Hsiao, Yun-Tzu Huang, Chen-Liang Chiu, Mu-Hsuan Liu, Jung-Yu Tung, Tseng-Huang Liu, Rong-Long Pan, Yuh-Ju Sun: Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. In: Nature. Band484, Nr.7394, 2012, S.399–403, doi:10.1038/nature10963 (englisch). Grafik vgl. A working model for proton pumping in VrH+-PPase
Nils G. Holm, Herrick Baltscheffsky: Links between hydrothermal environments, pyrophosphate, Na+, and early evolution. In: Origins of Life and Evolution of Biospheres. Band41, Nr.5, 2011, S.483–493, doi:10.1007/s11084-011-9235-4 (englisch).
Tommi Kajandera, Juho Kellosalob, Adrian Goldman: Inorganic pyrophosphatases: One substrate, three mechanisms. In: FEBS Letters. Band587, Nr.13, 2013, S.1866f., doi:10.1016/j.febslet.2013.05.003 (englisch).
Armen Y. Mulkidjanian, Pavel Dibrov, Michael Y. Galperin: The past and present of sodium energetics: May the sodium-motive force be with you. In: Biochimica et Biophysica Acta (BBA) – Bioenergetics. Band1777, Nr.7–8, 2008, S.985–992, doi:10.1016/j.bbabio.2008.04.028 (englisch).
Armen Y Mulkidjanian, Michael Y Galperin, Kira S Makarova, Yuri I Wolf, Eugene V Koonin: Evolutionary primacy of sodium bioenergetics. In: Biology Direct. Band3, Nr.13, 2008, doi:10.1186/1745-6150-3-13 (englisch).
Suzanne J. Admiraal, Daniel Herschlag: Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis. In: Chemistry & Biology. Band2, Nr.11, 1995, S.729–739, doi:10.1016/1074-5521(95)90101-9 (englisch).
Lucien Bettendorff, Pierre Wins: Thiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors. In: FEBS Journal. Band276, Nr.11, 2009, S.2917–2925, doi:10.1111/j.1742-4658.2009.07019.x (englisch).
jstor.org
Herrick Baltscheffsky, Lars-Victor von Stedingk, Hans-Walter Heldt, Martin Klingenberg: Inorganic Pyrophosphate: Formation in Bacterial Photophosphorylation (Inorganic pyrophosphate is identified as the major product of photophosphorylation by isolated chromatophores from Rhodospirillum rubrum in the absence of added nucleotides.). In: Science. Band274, Nr.3740, 1966, S.1120–1122, JSTOR:1719164 (englisch).
nature.com
Shih-Ming Lin, Jia-Yin Tsai, Chwan-Deng Hsiao, Yun-Tzu Huang, Chen-Liang Chiu, Mu-Hsuan Liu, Jung-Yu Tung, Tseng-Huang Liu, Rong-Long Pan, Yuh-Ju Sun: Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. In: Nature. Band484, Nr.7394, 2012, S.399–403, doi:10.1038/nature10963 (englisch). Grafik vgl. A working model for proton pumping in VrH+-PPase
qmul.ac.uk
Laut IUBMB gilt für (anorganische) Pyrophosphatasen die Bezeichnung (inorganic) diphosphatase[1][2]