Satz von Napoleon (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Satz von Napoleon" in German language version.

refsWebsite
Global rank German rank
26th place
153rd place
2nd place
3rd place
513th place
549th place
1,067th place
2,868th place
613th place
1,083rd place
6th place
40th place
2,106th place
139th place
low place
low place

archive.org

  • Chambers’s Encyclopaedia. London 1867, Band IX, S. 538

cut-the-knot.org

doi.org

  • Stephen B. Gray: Generalizing the Petr-Douglas-Neumann Theorem on N-Gons. In: The American Mathematical Monthly, Band 110, Nr. 3, März 2003, S. 210–227 (JSTOR)
  • Christoph J. Scriba: Wie kommt 'Napoleons Satz' zu seinem namen? In: Historia Mathematica. Band 8, Nr. 4, 1981, S. 458–459, doi:10.1016/0315-0860(81)90054-9.

google.de

books.google.de

  • Claudi Alsina, Roger B. Nelsen: Perlen der Mathematik: 20 geometrische Figuren als Ausgangspunkte für mathematische Erkundungsreisen. Springer, 2015, ISBN 978-3-662-45461-9, S. 90–91

jstor.org

  • Stephan Berendonk: A Napoleonic Theorem for Trapezoids. In: The American Mathematical Monthly, Vol. 126, No. 4, April 2019, S. 367–369 (JSTOR)
  • Branko Grünbaum: Is Napoleon’s Theorem Really Napoleon’s Theorem? In: The American Mathematical Monthly. Band 119, Nr. 6 (Juni‒Juli 2012), S. 495–501 (online, JSTOR)

ox.ac.uk

dbooks.bodleian.ox.ac.uk

  • Dublin problems: a collection of questions proposed to the candidates for the gold medal at the general examinations, from 1816 to 1822 inclusive. Which is succeeded by an account of the fellowship examination, in 1823. G. and W. B. Whittaker, London 1823 (online, 22,8 MB)

washington.edu

faculty.washington.edu

  • Branko Grünbaum: Is Napoleon’s Theorem Really Napoleon’s Theorem? In: The American Mathematical Monthly. Band 119, Nr. 6 (Juni‒Juli 2012), S. 495–501 (online, JSTOR)

wolfram.com

mathworld.wolfram.com