Siphoviren (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Siphoviren" in German language version.

refsWebsite
Global rank German rank
4th place
7th place
2nd place
3rd place
7,021st place
2,182nd place
low place
low place
5,233rd place
725th place
120th place
143rd place
2,912th place
1,242nd place
7,012th place
low place
2,925th place
4,686th place
1,960th place
130th place
low place
2,711th place
3,538th place
1,951st place
1,670th place
2,920th place
low place
low place
low place
low place
228th place
655th place
low place
low place
low place
4,985th place
222nd place
272nd place
3,555th place
2,903rd place
low place
low place
274th place
152nd place
121st place
278th place
low place
low place
low place
low place
317th place
14th place
4,378th place
6,650th place
3,410th place
5,745th place
low place
low place
149th place
298th place

academia.edu

asm.org

jb.asm.org

awi.de

epic.awi.de

deadurl.invalid

doi.org

  • Adeline Goulet, Silvia Spinelli, Jennifer Mahony, Christian Cambillau: Conserved and Diverse Traits of Adhesion Devices from Siphoviridae Recognizing Proteinaceous or Saccharidic Receptors. In: MDPI: Viruses, Band 12, Nr. 5, Special Issue In Memory of Michael Rossmann, 6. Mai 2010, S. 512; doi:10.3390/v12050512 (englisch).
  • Antje Wichels, Stefan S. Biel, Hans R. Gelderblom, Thorsten Brinkhoff, Gerard Muyzer, Christian Schütt: Bacteriophage diversity in the North Sea. In: Applied and Environmental Microbiology, Band 64, Nr. 11, November 1998, S. 4128​-4133; doi:10.1128/AEM.64.11.4128-4133.1998, PMID 9797256, PMC 106618 (freier Volltext), PDF (englisch).
  • Dann Turner, Andrew M. Kropinski, Evelien M. Adriaenssens: A Roadmap for Genome-Based Phage Taxonomy. In: MDPI Viruses, Band 13, Nr. 3, Section Bacterial Viruses, 18. März 2021, 506, doi:10.3390/v13030506.
  • Yuanchao Zhan, Sijun Huang, Sonja Voget, Meinhard Simon, Feng Chen: A novel roseobacter phage possesses features of podoviruses, siphoviruses, prophages and gene transfer agents. In: nature: Scientific reports, Band 6, Nr. 30372, 27. Juli 2016; doi:10.1038/srep30372 (englisch).
  • Ying Liu, Tatiana A. Demina, Simon Roux, Pakorn Aiewsakun, Darius Kazlauskas, Peter Simmonds, David Prangishvili, Hanna M. Oksanen, Mart Krupovic: Diversity, taxonomy, and evolution of archaeal viruses of the class Caudoviricetes. In: PLOS Biology, Band 19, Nr. 11, e3001442, 9. November 2021; doi:10.1371/journal.pbio.3001442, PMID 34752450, PMC 8651126 (freier Volltext).
  • Sarah Thiroux, Samuel Dupont, Camilla L. Nesbø, Nadège Bienvenu, Mart Krupovic, Stéphane L'Haridon, Dominique Marie, Patrick Forterre, Anne Godfroy, Claire Geslin: The first head-tailed virus, MFTV1, infecting hyperthermophilic methanogenic deep-sea archaea. In: AMI Journals: Environmental Microbiology, Band 23, Nr. 7, Juli 2021, S. 3614​-3626; doi:10.1111/1462-2920.15271, PMID 33022088.
  • Vuong Quoc Hoang Ngo, François Enault, Cédric Midoux, Mahendra Mariadassou, Olivier Chapleur, Laurent Mazéas, Valentin Loux, Théodore Bouchez, Mart Krupovic, Ariane Bize: Diversity of novel archaeal viruses infecting methanogens discovered through coupling of stable isotope probing and metagenomics. In: Applied Microbiology International : Applied Microbiology, Band 24, Nr. 10, Thematic Issue on Pathogen and Antimicrobial Resistance Ecology, Oktober 2022, S. 4853​-4868; doi:10.1111/1462-2920.16120, PMID 35848130, PMC 9796341 (freier Volltext), sfam HAL 03727436 (PDF; 6,1 MB), Epub 18. Juli 2022.
  • Branko Rihtman, Richard J. Puxty, Alexia Hapeshi, Andrew D. Millard, David J. Scanlan, Yin Chen: A new family of globally distributed lytic roseophages with unusual deoxythymidine to deoxyuridine substitution. In: Current Biology, Band 31, Nr. 14, 26. Juli 2021, S. 3199-3206.e4; doi:10.1016/j.cub.2021.05.014, ePub 24. Mai 2021 (englisch).
  • Roman Pantůček, J. Doskar, V. Růzicková, P. Kaspárek et al.: Identification of bacteriophage types and their carriage in Staphylococcus aureus, in: Archives of Virology 149(9), S. 1689–1703, Oktober 2004, doi:10.1007/s00705-004-0335-6, PMID 15593413, Abstract und Table 1.
  • Roman Pantůček, J. Doskar, V. Růzicková, P. Kaspárek et al.: Identification of bacteriophage types and their carriage in Staphylococcus aureus, in: Archives of Virology 149(9), S. 1689–1703, Oktober 2004, doi:10.1007/s00705-004-0335-6, PMID 15593413, Abstract und Table 1.
  • Yoonjee Chang, Sangryeol Ryu: Characterization of a novel cell wall binding domain-containing Staphylococcus aureus endolysin LysSA97. In: Applied Microbiology & Biotechnology, Band 101, Nr. 1, Januar 2017, S. 147-158; doi:10.1007/s00253-016-7747-6 (englisch).
  • D. Gutiérrez, E. M. Adriaenssens, B. Martínez, A. Rodríguez, R. Lavigne, A. M. Kropinski, P. García: Three proposed new bacteriophage genera of staphylococcal phages: „3alikevirus“, „77likevirus“ and „Phietalikevirus“. In: Archives of Virology. 159. Jahrgang, Nr. 2, 11. September 2013, S. 389–398, doi:10.1007/s00705-013-1833-1, PMID 24022640 (englisch).
  • Harald Brüssow, Carlos Canchaya, Wolf-Dietrich Hard: Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion, in: Microbiol Mol Biol Rev. 68(3), September 2004, S. 560–602, doi:10.1128/MMBR.68.3.560-602.2004, PMC 515249 (freier Volltext), PMID 15353570, siehe insbes. Tabelle 1 und Abb. 6.
  • Fengjuan Tian, Jing Lia, Fei Li, Yjgang Tong: Characteristics and genome analysis of a novel bacteriophage IME1323_01, the first temperate bacteriophage induced from Staphylococcus caprae. In: Virus Research, Band 305, November 2021, S. 198569; doi:10.1016/j.virusres.2021.198569 (englisch).
  • Xuejing Li, Ruizhe Guo, Xiao Zou, Yanyan Yao, Longfei Lu: The First Cbk-Like Phage Infecting Erythrobacter, Representing a Novel Siphoviral Genus. In: Frontiers in Microbiology, Sec. Phage Biology, Band 13, 10. Mai 2022; doi:10.3389/fmicb.2022.861793 (englisch).
  • Kjærgaard Nielsen, Alexander Byth Carstens, Patrick Browne, René Lametsch, Horst Neve, Witold Kot, Lars Hestbjerg Hansen: The first characterized phage against a member of the ecologically important sphingomonads reveals high dissimilarity against all other known phages, in: Scientific Reports Band 7, Nr. 13566, 19. Oktober 2017, doi:10.1038/s41598-017-13911-1:
  • Rebekah M. Dedrick, Carlos A. Guerrero-Bustamante, Rebecca A. Garlena, Daniel A. Russell, Katrina Ford, Kathryn Harris, Kimberly C. Gilmour, James Soothill, Deborah Jacobs-Sera, Robert T. Schooley, Graham F. Hatfull, Helen Spencer: Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. In: Nat Med, Band 25, S. 730–733, 8. Mai 2019, doi:10.1038/s41591-019-0437-z. PMC 6557439 (freier Volltext), PMID 31068712. ResearchGate.
  • Casey Stamereilers, Lucy LeBlanc, Diane Yost, Penny S. Amy, Philippos K. Tsourkas: Comparative genomics of 9 novel Paenibacillus larvae bacteriophages, in: Bacteriophage, Band 6, Nr. 3, e1220349, Epub 5. August 2016, doi:10.1080/21597081.2016.1220349.
  • Preeti Gipson, Matthew L. Baker, Desislava Raytcheva, Cameron Haase-Pettingell, Jacqueline Piret, Jonathan A. King, Wah Chiu: Protruding knob-like proteins violate local symmetries in an icosahedral marine virus. In: Nature Communications. 5. Jahrgang, Nr. 4278, 2. Juli 2014, doi:10.1038/ncomms5278 (englisch)., Corrigendum in: Nature Communications, Band 6, Nr. 6040, 12. Januar 2015, doi:10.1038/ncomms7040.
  • Preeti Gipson, Matthew L. Baker, Desislava Raytcheva, Cameron Haase-Pettingell, Jacqueline Piret, Jonathan A. King, Wah Chiu: Protruding knob-like proteins violate local symmetries in an icosahedral marine virus. In: Nature Communications. 5. Jahrgang, Nr. 4278, 2. Juli 2014, doi:10.1038/ncomms5278 (englisch)., Corrigendum in: Nature Communications, Band 6, Nr. 6040, 12. Januar 2015, doi:10.1038/ncomms7040.
  • Nasser Alqurainy, Laura Miguel-Romero, Jorge Moura de Sousa, John Chen, Eduardo P. C. Rocha, Alfred Fillol-Salom, José R. Penadés: A widespread family of phage-inducible chromosomal islands only steals bacteriophage tails to spread in nature. In: Cell Host & Microbe, Band 31, Nr. 1, S. 69-82.e5, 11. Januar 2023; doi:10.1016/j.chom.2022.12.001, ResearchGate, Epub: 2. Januar 2023 (englisch).
  • Manuela Villion, Sylvain Moineau: Bacteriophages of Lactobacillus. In: Frontiers in Bioscience, Band 14, Nr. 14, Februar 2009, S. 1661-1683; doi:10.2741/3332, PMID 19273154. Siehe insbes. Tbl. 2: Lactobacillus Siphoviridae phages auf S. 1667.
  • Harald Brüssow, Frank Desiere: Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. In: Mol Microbiol. 39, Nr. 2, 2001, S. 213–222. doi:10.1046/j.1365-2958.2001.02228.x, PMID 11136444, 21. Dezember 2001, Stichwort „λ supergroup“.
  • P. L. Wagner, M. K. Waldor: Bacteriophage control of bacterial virulence. In: Infection and Immunity. Band 70, Nr. 8, August 2002, S. 3985–3993, TABLE 1. Bacterial virulence properties altered by bacteriophages, doi:10.1128/IAI.70.8.3985-3993.2002, PMID 12117903, PMC 128183 (freier Volltext) – (englisch).
  • J. J. Costa, J. L. Michel, R. Rappuoli, J. R. Murphy: Restriction map of corynebacteriophages beta c and beta vir and physical localization of the diphtheria tox operon. In: Journal of Bacteriology. 148. Jahrgang, Nr. 1, 1981, S. 124–130, doi:10.1128/JB.148.1.124-130.1981, PMID 6270058, PMC 216174 (freier Volltext) – (englisch).
  • Stephen Hayes, Jennifer Mahony, Renaud Vincentelli, Laurie Ramond, Arjen Nauta Douwe van Sinderen, Christian Cambillau: Ubiquitous Carbohydrate Binding Modules Decorate 936 Lactococcal Siphophage Virions, in: MDPI Viruses, Band 11, Br. 7, Section Bacterial Viruses, 631, 9. Juli 2019, doi:10.3390/v11070631.
  • Matthew Dunne, Mario Hupfeld, Jochen Klumpp, Martin J. Loessner: Molecular Basis of Bacterial Host Interactions by Gram-Positive Targeting Bacteriophages, in: MDPI Viruses, Band 10, Nr. 8, Special Issue Phage-Host Interactions, 397, 28. Juli 2018; doi:10.3390/v10080397 (englisch). Anm.: B. subtilis phage PBS1 gehört zu den Myoviren (Spezies Takahashivirus PBS1).
  • Silvia Spinelli, David Veesler, Cecilia Bebeacua, Christian Cambillau: Structures and host-adhesion mechanisms of lactococcal siphophages, in: Front. Microbiol., 16. Januar 2014, Part of research topic Gram-positive phages: From isolation to application, doi:10.3389/fmicb.2014.00003.
  • Erna Li, Jiangtao Zhao, Yanyan Ma, Xiao Wei, Huan Li, Weishi Lin, Xuesong Wang, Chao Li, Zhiqiang Shen, Ruixiang Zhao, Aimin Jiang, Huiying Yang, Jing Yuan, Xiangna Zhao: Characterization of a novel Achromobacter xylosoxidans specific siphoviruse: phiAxp-1. In: Nature: Scientific Reports, Band 6, 24. Februar 2016, S. 21943; doi:10.1038/srep21943, Researchgate (englisch).
  • Bellophage. In: Encyclopedia of Genetics, Genomics, Proteomics and Informatics. Springer, Dordrecht, 2008. doi:10.1007/978-1-4020-6754-9_1666.
  • M. X. Yu, Michael R. Slater, Hans-Wolfgang Ackermann: Isolation and characterization of Thermus bacteriophages. In: Archives of Virology, Band 151, S. 663–679, April 2006; doi:10.1007/s00705-005-0667-x, PMID 16308675, PDF, Epub 28. November 2005. Siehe insbes. Tbl. 2.: Main characteristics and origin of phages.
  • Leonid Minakhin, Manisha Goel, Zhanna Berdygulova, Erlan Ramanculov, Laurence Florens, Galina Glazko, Valeri N. Karamychev, Alexei I. Slesarev, Sergei A. Kozyavkin, Igor Khromov, Hans-Wolfgang Ackermann, Michael Washburn, Arcady Mushegian, Konstantin Severinov: Genome Comparison and Proteomic Characterization of Thermus thermophilus Bacteriophages P23-45 and P74-26: Siphoviruses with Triplex-forming Sequences and the Longest Known Tails. In: Journal of Molecular Biology (jmb), Band 378, Nr. 2, 25. April 2008, S. 468-480; doi:10.1016/j.jmb.2008.02.018.
  • Brendan J. Hilbert, Janelle A. Hayes, Nicholas P. Stone, Rui-Gang Xu, Brian A. Kelch: The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain. In: Nucleic Acids Research. Band 45. Nr. 6, 7. April 2017, S. 3591​–3605; doi:10.1093/nar/gkw1356, PMID 28082398, PMC 5389665 (freier Volltext), Epub: 13. Januar 2017.
  • Nicholas P. Stone, Brendan J. Hilbert, Daniel Hidalgo, Kevin T. Halloran, Jooyoung Lee, Erik J. Sontheimer, Brian A. Kelch: A Hyperthermophilic Phage Decoration Protein Suggests Common Evolutionary Origin with Herpesvirus Triplex Proteins and an Anti-CRISPR Protein. In: Structure, Band 26, Nr. 7, 3. Juli 2018; doi:10.1016/j.str.2018.04.008, PMID 29779790, PMC 6277972 (freier Volltext), Epub 17. Mai 2018.
  • Nicholas P. Stone, Brendan J. Hilbert, Daniel Hidalgo, Kevin T. Halloran, Jooyoung Lee, Erik J. Sontheimer, Brian A. Kelch: A Hyperthermophilic Phage Decoration Protein Suggests Common Evolutionary Origin with Herpesvirus Triplex Proteins and an Anti-CRISPR Protein. In: Structure, Band 26, Nr. 7, 3. Juli 2018; doi:10.1016/j.str.2018.04.008, PMID 29779790, PMC 6277972 (freier Volltext), Epub 17. Mai 2018.
  • Katrin Weidenbach, Sandro Wolf, Anne Kupczok, Tobias Kern, Martin A. Fischer, Jochen Reetz, Natalia Urbańska, Sven Künzel, Ruth A. Schmitz, Michael Rother: Characterization of Blf4, an Archaeal Lytic Virus Targeting a Member of the Methanomicrobiales. In: MDPI: Viruses, Band 13, Nr. 10; doi:10.3390/v13101934, PMID 34696364, PMC 8540584 (freier Volltext).
  • Brigitte Dreiseikelmann, Boyke Bunk, Cathrin Spröer, Manfred Rohde, Manfred Nimtz, Johannes Wittmann: Characterization and Genome Comparisons of Three Achromobacter Phages of the Family Siphoviridae, in: Arch Virol 162(8), 29. März 2017, S. 2191–2201, doi:10.1007/s00705-017-3347-8, PMID 28357512.
  • Nana Lu, Choljin Kim, Zhi Chen, Ying Wen, Qing Wei, Yi Qiu, Shiwei Wang, Yuan Song: Characterization and genome analysis of the temperate bacteriophage φSAJS1 from Streptomyces avermitilis, in: Virus Res Band 265, Mai 2019, S. 34–42, doi:10.1016/j.virusres.2019.03.006, PMID 30851301.
  • Jacqueline Z.-M. Chan, Andrew D. Millard, Nicholas H. Mann, Hendrik Schäfer: Comparative genomics defines the core genome of the growing N4-like phage genus and identifies N4-like Roseophage specific genes, in: Frontiers in Microbiology, Band 5, Nr. 506, 10. Oktober 2014, doi:10.3389/fmicb.2014.00506. Siehe insbes. Phylogenetischen Baum Fig. 5
  • Curtis A. Suttle: The Ecology of Cyanobacteria. Hrsg.: Brian A. Whitton, Malcolm Potts. Springer Netherlands, 2000, ISBN 978-0-7923-4735-4, Cyanophages and Their Role in the Ecology of Cyanobacteria, S. 563–589, doi:10.1007/0-306-46855-7_20 (englisch).
  • Proux C, van Sinderen D, Suarez J, Garcia P, Ladero V, Fitzgerald GF, Desiere F, Brüssow H: The dilemma of phage taxonomy illustrated by comparative genomics of Sfi21-like Siphoviridae in lactic acid bacteria. In: J. Bacteriol. 184. Jahrgang, Nr. 21, 2002, S. 6026–6036, doi:10.1128/JB.184.21.6026-6036.2002, PMID 12374837, PMC 135392 (freier Volltext) – (englisch).
  • K. Holmfeldt, N. Solonenko, M. Shah, K. Corrier, L. Riemann, N. C. Verberkmoes, M. B. Sullivan: Twelve previously unknown phage genera are ubiquitous in global oceans. In: Proceedings of the National Academy of Sciences. 110. Jahrgang, Nr. 31, 2013, S. 12798–803, doi:10.1073/pnas.1305956110, PMID 23858439, PMC 3732932 (freier Volltext) – (englisch).
  • Y. D. Niu, T. A. McAllister, J. H. E. Nash, A. M. Kropinski, K. Stanford: Four Escherichia coli O157:H7 Phages: A New Bacteriophage Genus and Taxonomic Classification of T1-Like Phages. In: PLoS ONE. 9. Jahrgang, Nr. 6, 2014, S. e100426, doi:10.1371/journal.pone.0100426, PMID 24963920, PMC 4070988 (freier Volltext) – (englisch).
  • Yunfen Hua, Tingting Luo, Yiqi Yang, Dong Dong, Rui Wang, Yanjun Wang, Mengsha Xu, Xiaokui Guo, Fupin Hu, Ping He: Phage Therapy as a Promising New Treatment for Lung Infection Caused by Carbapenem-Resistant Acinetobacter baumannii in Mice, in: Front. Microbiol., 9. Januar 2018; doi:10.3389/fmicb.2017.02659.
  • Yan Zhou, Xuexia Xu, Yifeng Wei, Yu Cheng, Yu Guo, Ivan Khudyakov, Fuli Liu, Ping He, Zhangyue Song, Zhi Li, Yan Gao, Ee Lui Ang, Huimin Zhao, Yan Zhang, Suwen Zhao: A widespread pathway for substitution of adenine by diaminopurine in phage genomes. In: Science. 372. Jahrgang, Nr. 6541, 30. April 2021, doi:10.1126/science.abe4882 (englisch).
  • Natalia Bagińska, Anna Pichlak, Andrzej Górski1, Ewa Jończyk-Matysiak: Specific and Selective Bacteriophages in the Fight against Multidrug-resistant Acinetobacter baumannii, in: Virologica Sinica, Band 34, 2019, S. 347–357; doi:10.1007/s12250-019-00125-0, Tbl. 1.
  • J. J. Wheeler, Carina M. Carlos, Helen A. Cedzidlo, Xingfeiyang Liu, Massimo S. Modica, Izaiah D. Rhodes, Leah F. Truskinovsky: Complete Genome Sequence of Arthrobacter Phage GantcherGoblin Exhibits Both Conservation with Subcluster AU6 Phages and Genetic Novelty. In: Microbiology Resource Announcements, Band 11, Nr. 12, November 2022, S. e0077122; doi:10.1128/mra.00771-22, ResearchGate (englisch).
  • Eunsu Ha, Bokyung Son, Sangryeol Ryu: Clostridium perfringens Virulent Bacteriophage CPS2 and Its Thermostable Endolysin LysCPS2, in: MDPI Viruses, Band 10, Nr. 5, Special Issue Biotechnological Applications of Phage and Phage-Derived Proteins, 251, 11. Mai 2018, doi:10.3390/v10050251.
  • Victor Krylov, Olga Shaburova, Sergey Krylov, Elena Pleteneva: A Genetic Approach to the Development of New Therapeutic Phages to Fight Pseudomonas Aeruginosa in Wound Infections, in: MDPI Viruses Band 5, Nr.  1, 21. Dezember 2012, Special Issue Recent Progress in Bacteriophage Research, S. 15–53, doi:10.3390/v5010015.
  • Maureen McDonnell, Concepcion Ronda-Lain, Alexander Tomasz: “Diplophage”: a bacteriophage of Diplococcus pneumoniae, Virology Band 63, Nr. 2, Februar 1975, S. 577–582, doi:10.1016/0042-6822(75)90329-3.
  • Mohamed Sassi, Cecilia Bebeacua, Michel Drancourt, Christian Cambillau: The first structure of a mycobacteriophage, the Mycobacterium abscessus subsp. bolletii phage Araucaria, in: ASM J Virol, Band 87, Nr. 14, S. 8099–8109, 27. Juni 2013/Juli 2013, doi:10.1128/JVI.01209-13, PMC 3700213 (freier Volltext), PMID 23678183.
  • Mara E. Heinrichs, Benedikt Heyerhoff, Berin S. Arslan-Gatz, Michael Seidel, Jutta Niggemann, Bert Engelen: Deciphering the Virus Signal Within the Marine Dissolved Organic Matter Pool. In: Frontiers in Microbiology, Band 13, Sec. Aquatic Microbiology, 27. Mai 2022; doi:10.3389/fmicb.2022.863686 (englisch).
  • Daniel Santana de Carvalho, Ana Paula Trovatti Uetanabaro, Rodrigo Bentes Kato, Flávia Figueira Aburjaile, Arun Kumar Jaiswal, Rodrigo Profeta, Rodrigo Dias De Oliveira Carvalho, Sandeep Tiwar, Anne Cybelle Pinto Gomide, Eduardo Almeida Costa, Olga Kukharenko, Iryna Orlovska, Olga Podolich, Oleg Reva6 Pablo Ivan P. Ramos, Vasco Ariston De Carvalho Azevedo, Bertram Brenig, Bruno Silva Andrade, Jean-Pierre P. de Vera, Natalia O. Kozyrovska, Debmalya Barh, Aristóteles Góes-Neto: The Space-Exposed Kombucha Microbial Community Member Komagataeibacter oboediens Showed Only Minor Changes in Its Genome After Reactivation on Earth. In: Frontiers in Microbiology, Band 13, Sec. Evolutionary and Genomic Microbiology, 11. März 2022; doi:10.3389/fmicb.2022.782175 (englisch).

eol.org

eurekalert.org

expasy.org

viralzone.expasy.org

franklinpierce.edu

helsinki.fi

helda.helsinki.fi

hhmi.org

ictv.global

ictvonline.org

talk.ictvonline.org

ictvonline.org

inrae.fr

hal.inrae.fr

  • Vuong Quoc Hoang Ngo, François Enault, Cédric Midoux, Mahendra Mariadassou, Olivier Chapleur, Laurent Mazéas, Valentin Loux, Théodore Bouchez, Mart Krupovic, Ariane Bize: Diversity of novel archaeal viruses infecting methanogens discovered through coupling of stable isotope probing and metagenomics. In: Applied Microbiology International : Applied Microbiology, Band 24, Nr. 10, Thematic Issue on Pathogen and Antimicrobial Resistance Ecology, Oktober 2022, S. 4853​-4868; doi:10.1111/1462-2920.16120, PMID 35848130, PMC 9796341 (freier Volltext), sfam HAL 03727436 (PDF; 6,1 MB), Epub 18. Juli 2022.

mdpi.com

mementoweb.org

timetravel.mementoweb.org

microbiologysociety.org

nih.gov

ncbi.nlm.nih.gov

phagesdb.org

researchgate.net

sciencedirect.com

sciencefocus.com

sciencenews.org

scitechdaily.com

spektrum.de

springer.com

link.springer.com

theatlantic.com

virosin.org

warwick.ac.uk

wrap.warwick.ac.uk

wiley.com

onlinelibrary.wiley.com