Ernst Haeckel: Natürliche Schöpfungsgeschichte. Gemeinverständliche wissenschaftliche Vorträge über die Entwickelungslehre im Allgemeinen und diejenige von Darwin, Goethe und Lamarck im Besonderen, über die Anwendung derselben auf den Ursprung des Menschen und andere damit zusammenhängende Grundfragen der Naturwissenschaft. Georg Reimer, Berlin 1868, Kapitel 19 (Volltext)
Vincent M. Sarich, Allan C. Wilson: Immunological time scale for hominid evolution. In: Science. Band 158, 1967, S. 1200–1203; doi:10.1126/science.158.3805.1200
Aylwyn Scally, Richard Durbin: Revising the human mutation rate: implications for understanding human evolution. In: Nature Reviews Genetics. Band 13, 2012, S. 745–753, doi:10.1038/nrg3295.
Ewen Callaway: Studies slow the human DNA clock. In: Nature. Band 489, Nr. 7416, 2012, S. 343–344 doi:10.1038/489343a.
Kevin E. Langergraber et al.: Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. In: PNAS. Band 109, Nr. 39, 2012, S. 15716–15721, doi:10.1073/pnas.1211740109.
Masami Hasegawa u. a.: Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. In: Journal of Molecular Evolution. Band 22, Nr. 2, 1985, S. 160–174, doi:10.1007/bf02101694
Michael Heads: Evolution and biogeography of primates: a new model based on molecular phylogenetics, vicariance and plate tectonics. In: Zoologica Scripta. Band 39, Nr. 2, 2009, S. 107–127. doi:10.1111/j.1463-6409.2009.00411.x
R. L. Stauffer u. a.: Human and Ape Molecular Clocks and Constraints on Paleontological Hypotheses. In: The Journal of Heredity. Band 92, 2001, S. 469–474. (Volltext). Andere Autoren berechneten auch in jüngerer Zeit wiederum 26,8 Millionen Jahre, siehe Jan E. Janečka u. a.: Molecular and Genomic Data Identify the Closest Living Relative of Primates. In: Science. Band 318, 2007, S. 792–794. doi:10.1126/science.1147555
Aylwyn Scally et al.: Insights into hominid evolution from the gorilla genome sequence. In: Nature. Band 483, 2012, S. 169–175, (hier, S. 170), doi:10.1038/nature10842.
Zum gleichen Befund kam im selben Jahr eine weitere Studie, die sowohl paläontologische als auch molekularbiologische Daten einbezog; siehe Richard D. Wilkinson u. a.: Dating Primate Divergences through an Integrated Analysis of Palaeontological and Molecular Data. In: Systematic Biology. Band 60, Nr. 1, 2011, S. 16–31, doi:10.1093/sysbio/syq054 (Volltext (PDF) (Memento vom 5. Juni 2014 im Internet Archive)). Das Entstehen der Primaten wurde in dieser Studie in die Zeit vor 84,5 (69,5–103,5) Millionen Jahren datiert, die Trennung der Vorfahren der Gibbons und der Großen Menschenaffen in die Zeit vor 19,2 (15,1–24,1) Millionen Jahren.
Ann Gibbons: Turning Back the Clock: Slowing the Pace of Prehistory. In: Science. Band 338, Nr. 6104, 2012, S. 189–191, doi:10.1126/science.338.6104.189; Søren Besenbacher et al.: Direct estimation of mutations in great apes reconciles phylogenetic dating. In: Nature Ecology & Evolution. Band 3, 2018, S. 286–292, doi:10.1038/s41559-018-0778-x.
Jan E. Janečka u. a.: Molecular and Genomic Data Identify the Closest Living Relative of Primates. In: Science. Band 318, 2007, S. 793, doi:10.1126/science.1147555.
J. Agusti, S. Moyà-Solà: Mammal extinctions in the Vallesian (Upper Miocene). In: Lecture Notes in Earth Sciences. Band 30, 1990, S. 425–432, doi:10.1007/BFb0011163.
Gerard D. Gierliński et al.: Possible hominin footprints from the late Miocene (c. 5.7 Ma) of Crete? In: Proceedings of the Geologists' Association. Online-Publikation vom 31. August 2017, doi:10.1016/j.pgeola.2017.07.006.
J. Agustí u. a.: Explaining the end of the hominoid experiment in Europe. In: Journal of Human Evolution. Band 45, Nr. 2, 2003, S. 145–153, doi:10.1016/S0047-2484(03)00091-5.
Martin Pickford: Uplift of the Roof of Africa and its bearing on the Evolution of Mankind. In: Human Evolution. Band 5, Nr. 1, 1990, S. 1–20, doi:10.1007/BF02436472.
Kevin T. Uno u. a.: Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. In: Proceedings of the National Academy of Sciences of the United States of America. Band 108, Nr. 16, 2011, S. 6509–6514, doi:10.1073/pnas.1018435108.
Yutaka Kunimatsu u. a.: A new Late Miocene great ape from Kenya and its implications for the origins of African great apes and humans. In: Proceedings of the National Academy of Sciences of the United States of America. Band 104, Nr. 49, 2007, S. 19220–19225, doi:10.1073/pnas.0706190104.
Nick Patterson, Daniel J. Richter, Sante Gnerre, Eric S. Lander, David Reich: Genetic evidence for complex speciation of humans and chimpanzees. In: Nature. Band 441, 2006, S. 1103–1108, doi:10.1038/nature04789.
Alexey V. Fedorov u. a.: Tropical cyclones and permanent El Niño in the early Pliocene epoch. In: Nature. Band 463, 2010, S. 1066–1070, doi:10.1038/nature08831.
Thure E. Cerling u. a.: Woody cover and hominin environments in the past 6 million years. In: Nature. Band 476, 2011, S. 51–56, doi:10.1038/nature10306.
Chad D. Huff u. a.: Mobile elements reveal small population size in the ancient ancestors of Homo sapiens. In: Proceedings of the National Academy of Sciences of the United States of America. Band 107, Nr. 5, 2010, S. 2147–2152, doi:10.1073/pnas.0909000107.
Johannes Krause, Qiaomei Fu, Jeffrey M. Good, Bence Viola, Michael V. Shunkov, Anatoli P. Derevianko, Svante Pääbo: The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. In: Nature. Band 464, 2010, doi:10.1038/nature08976; David Reich u. a.: Genetic history of an archaic hominin group from Denisova Cave in Siberia. In: Nature. Band 468, Nr. 7327, 2010, S. 1053–1060, doi:10.1038/nature09710; Maria Mednikova: A proximal pedal phalanx of a Paleolithic hominin from denisova cave, Altai. In: Archaeology, Ethnology and Anthropology of Eurasia. Band 39, Nr. 1, 2011, S. 129–138, doi:10.1016/j.aeae.2011.06.017.
David Reich et al.: Denisova Admixture and the First Modern Human Dispersals into Southeast Asia and Oceania. In: The American Journal of Human Genetics. Band 89, Nr. 4, 2011, S. 516–528, doi:10.1016/j.ajhg.2011.09.005.
Michael F. Hammer u. a.: Genetic evidence for archaic admixture in Africa. In: Proceedings of the National Academy of Sciences of the United States of America. Band 108, Nr. 37, 2011, S. 15123–15128, doi:10.1073/pnas.1109300108; Human ancestors interbred with related species. Auf: nature.com vom 5. September 2011.
Eleanor M. L. Scerri et al.: Did Our Species Evolve in Subdivided Populations across Africa, and Why Does It Matter? In: Trends in Ecology & Evolution. Band 33, Nr. 8, 2018, S. 582–594, doi:10.1016/j.tree.2018.05.005.
Brenna M. Henn u. a.: Hunter-gatherer genomic diversity suggests a southern African origin for modern humans. In: Proceedings of the National Academy of Sciences of the United States of America. Band 108, Nr. 13, S. 5154–5162, doi:10.1073/pnas.1017511108.
William King: The reputed fossil man of the Neanderthal. In: Quarterly Journal of Science. Band 1, 1864, S. 88–97, online. Zuvor hatte King den Namen bereits an anderer Stelle – quasi inoffiziell – vorgeschlagen, siehe William King: On the Neanderthal Skull, or Reasons for believing it to belong to the Clydian Period and to a species different from that represented by Man. In: British Association for the Advancement of Science, Notices and Abstracts for 1863, Part II. London 1864, S. 81 f.
Michael F. Hammer u. a.: Genetic evidence for archaic admixture in Africa. In: Proceedings of the National Academy of Sciences of the United States of America. Band 108, Nr. 37, 2011, S. 15123–15128, doi:10.1073/pnas.1109300108; Human ancestors interbred with related species. Auf: nature.com vom 5. September 2011.
Janet I. Malowany, Jagdish Butany: Pathology of sickle cell disease. In: Seminars in diagnostic pathology. Band 29, Nummer 1, Februar 2012, S. 49–55, ISSN0740-2570, PMID 22372205.
R. L. Stauffer u. a.: Human and Ape Molecular Clocks and Constraints on Paleontological Hypotheses. In: The Journal of Heredity. Band 92, 2001, S. 469–474. (Volltext). Andere Autoren berechneten auch in jüngerer Zeit wiederum 26,8 Millionen Jahre, siehe Jan E. Janečka u. a.: Molecular and Genomic Data Identify the Closest Living Relative of Primates. In: Science. Band 318, 2007, S. 792–794. doi:10.1126/science.1147555
Jens Lorenz Franzen, Michael Gudo, Tareq Syed: Das „Tier-Mensch-Übergangsfeld“: Evolutive Wandlung und konstruktionsmorphologische Rekonstruktion. In: Querschnitte. Band 4, 2010, S. 3–18, Volltext.
Zum gleichen Befund kam im selben Jahr eine weitere Studie, die sowohl paläontologische als auch molekularbiologische Daten einbezog; siehe Richard D. Wilkinson u. a.: Dating Primate Divergences through an Integrated Analysis of Palaeontological and Molecular Data. In: Systematic Biology. Band 60, Nr. 1, 2011, S. 16–31, doi:10.1093/sysbio/syq054 (Volltext (PDF) (Memento vom 5. Juni 2014 im Internet Archive)). Das Entstehen der Primaten wurde in dieser Studie in die Zeit vor 84,5 (69,5–103,5) Millionen Jahren datiert, die Trennung der Vorfahren der Gibbons und der Großen Menschenaffen in die Zeit vor 19,2 (15,1–24,1) Millionen Jahren.
Janet I. Malowany, Jagdish Butany: Pathology of sickle cell disease. In: Seminars in diagnostic pathology. Band 29, Nummer 1, Februar 2012, S. 49–55, ISSN0740-2570, PMID 22372205.