Stärke (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Stärke" in German language version.

refsWebsite
Global rank German rank
2nd place
3rd place
9,664th place
717th place
813th place
69th place
8,389th place
568th place
1st place
1st place
1,160th place
2,116th place
low place
4,310th place
5,636th place
6,264th place
1,283rd place
1,723rd place
2,106th place
139th place
low place
low place
low place
low place
low place
low place
low place
1,619th place

agrana-research.com

dguv.de

gestis.dguv.de

doi.org

  • Beate Pfannemüller und Gerd Ziegast: Resonanz-Raman-Spektroskopie an Amylose-Iodkomplexen. In: Starch. 35, 7–11 (1983), doi:10.1002/star.19830350104.
  • Tao Cai, Hongbing Sun, Jing Qiao, Leilei Zhu, Fan Zhang, Jie Zhang, Zijing Tang, Xinlei Wei, Jiangang Yang et al.: Cell-free chemoenzymatic starch synthesis from carbon dioxide. In: Science. Band 373, Nr. 6562, 24. September 2021, S. 1523–1527, doi:10.1126/science.abh4049 (Online): „Starches, a storage form of carbohydrates, are a major source of calories in the human diet and a primary feedstock for bioindustry. We report a chemical-biochemical hybrid pathway for starch synthesis from carbon dioxide (CO2) and hydrogen in a cell-free system. The artificial starch anabolic pathway (ASAP), consisting of 11 core reactions, was drafted by computational pathway design, established through modular assembly and substitution, and optimized by protein engineering of three bottleneck-associated enzymes. In a chemoenzymatic system with spatial and temporal segregation, ASAP, driven by hydrogen, converts CO2 to starch at a rate of 22 nanomoles of CO2 per minute per milligram of total catalyst, an ~8.5-fold higher rate than starch synthesis in maize. This approach opens the way toward future chemo-biohybrid starch synthesis from CO2.“
  • Margaret A. Chen, David A. Weinstein: Glycogen storage diseases: Diagnosis, treatment and outcome. In: Translational Science of Rare Diseases. Band 1, Nr. 1, 26. August 2016, S. 45–72, doi:10.3233/trd-160006 (Online [abgerufen am 1. Mai 2017]).
  • Ying Guan, Deborah M. Pearsall, Xing Gao, Fuyou Chen, Shuwen Pei, Zhenyu Zhou: Plant use activities during the Upper Paleolithic in East Eurasia: Evidence from the Shuidonggou Site, Northwest China. In: Quaternary International (Recent Advances in Studies of the Late Pleistocene and Palaeolithic of Northeast Asia), Bd. 347, Okt. 2014, S. 74–83, doi:10.1016/j.quaint.2014.04.007.
  • Lyn Wadley, Lucinda Backwell, Francesco d’Errico, Christine Sievers: Cooked starchy rhizomes in Africa 170 thousand years ago. In: Science, Bd. 367, Nr. 6473, Jan. 2020, S. 87–91, doi:10.1126/science.aaz5926.
  • Anna Revedin, Biancamaria Aranguren, Roberto Becattini, Laura Longo, Emanuele Marconi, Marta Mariotti Lippi, Natalia Skakun, Andrey Sinitsyn, Elena Spiridonova, Jiří Svoboda, Erik Trinkaus: Thirty thousand-year-old evidence of plant food processing. In: Proceedings of the National Academy of Sciences of the United States of America, Bd. 107, Nr. 44 2010, S. 18815–18819, doi:10.1073/pnas.1006993107.

globaltimes.cn

  • Wang Qi: Chinese scientists complete starch synthesis from CO2, revolutionary for agricultural production and promoting carbon neutrality. In: Global Times. Beijing 24. September 2021 (Online): "It also means starch could in future be made from carbon dioxide in a process similar to brewing beer," Ma said, noting carbon dioxide can be reduced to methanol, which can be converted to starch.

google.de

books.google.de

idiotikon.ch

digital.idiotikon.ch

medra.org

  • Margaret A. Chen, David A. Weinstein: Glycogen storage diseases: Diagnosis, treatment and outcome. In: Translational Science of Rare Diseases. Band 1, Nr. 1, 26. August 2016, S. 45–72, doi:10.3233/trd-160006 (Online [abgerufen am 1. Mai 2017]).

merckmillipore.com

newatlas.com

phys.org

science.org

  • Tao Cai, Hongbing Sun, Jing Qiao, Leilei Zhu, Fan Zhang, Jie Zhang, Zijing Tang, Xinlei Wei, Jiangang Yang et al.: Cell-free chemoenzymatic starch synthesis from carbon dioxide. In: Science. Band 373, Nr. 6562, 24. September 2021, S. 1523–1527, doi:10.1126/science.abh4049 (Online): „Starches, a storage form of carbohydrates, are a major source of calories in the human diet and a primary feedstock for bioindustry. We report a chemical-biochemical hybrid pathway for starch synthesis from carbon dioxide (CO2) and hydrogen in a cell-free system. The artificial starch anabolic pathway (ASAP), consisting of 11 core reactions, was drafted by computational pathway design, established through modular assembly and substitution, and optimized by protein engineering of three bottleneck-associated enzymes. In a chemoenzymatic system with spatial and temporal segregation, ASAP, driven by hydrogen, converts CO2 to starch at a rate of 22 nanomoles of CO2 per minute per milligram of total catalyst, an ~8.5-fold higher rate than starch synthesis in maize. This approach opens the way toward future chemo-biohybrid starch synthesis from CO2.“

staerkeverband.de

suva.ch

web.archive.org