Zentrifugalkraft (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Zentrifugalkraft" in German language version.

refsWebsite
Global rank German rank
2,106th place
139th place
26th place
153rd place
low place
2,541st place
9,342nd place
1,201st place

dlr.de

google.de

books.google.de

  • Hans J. Paus: Physik in Experimenten und Beispielen. 3., aktualisierte Auflage. Hanser, München 2007, ISBN 3-446-41142-9, S. 33–35 (eingeschränkte Vorschau in der Google-Buchsuche).
  • Bruno Assmann, Peter Selke: Kinematik und Kinetik (= Technische Mechanik. Band 3). 15., überarbeitete Auflage. Oldenbourg, München 2011, ISBN 978-3-486-59751-6, S. 252 (eingeschränkte Vorschau in der Google-Buchsuche). „Die Zentrifugalkraft ist die Reaktionskraft der Zentripetalkraft, die die gekrümmte Bahn erzwingt.“
  • Dietmar Gross, Werner Hauger, Jarg Schrader, Wolfgang A. Wall: Technische Mechanik. Band 3: Kinetik. 10. Auflage. Gabler Wissenschaftsverlage, 2008, ISBN 978-3-540-68422-0, S. 191 (eingeschränkte Vorschau in der Google-Buchsuche). „Wir schreiben nun und fassen das negative Produkt aus der Masse und der Beschleunigung formal als eine Kraft auf, die wir […] D’Alembertsche Trägheitskraft nennen: . Diese Kraft ist keine Kraft im Newtonschen Sinne, da zu ihr keine Gegenkraft existiert (sie verletzt das Axiom actio=reactio!), wir bezeichnen sie daher als Scheinkraft.“
  • Cornelius Lanczos: The Variational Principles of Mechanics. Courier Dover Publications, New York 1986, ISBN 0-486-65067-7, S. 88–110 (eingeschränkte Vorschau in der Google-Buchsuche). S. 88: „We now define a vector I by the equation I = −m A. This vector I can be considered as a force created by the motion. We call it the “force of inertia”. With this concept the equation of Newton can be formulated as follows: F + I = 0.“
  • Martin Mayr: Technische Mechanik: Statik, Kinematik – Kinetik – Schwingungen, Festigkeitslehre. 6. überarbeitete Auflage. Hanser, 2008, ISBN 978-3-446-41690-1 (eingeschränkte Vorschau in der Google-Buchsuche). „Bei der Bewegung auf einer gekrümmten Bahn tritt zusätzlich die Normal- oder Zentripetalbeschleunigung auf. Die zugehörige Trägheitskraft nennen wir Zentrifugalkraft.“
  • Mahnken: Lehrbuch der Technischen Mechanik. Dynamik. Springer, 2012, ISBN 978-3-642-19837-3 (eingeschränkte Vorschau in der Google-Buchsuche). „Wir bemerken noch, dass die Zentrifugalkraft jeweils mit der Zentripetalkraft im Gleichgewicht ist, welche zum Mittelpunkt hin gerichtet ist.“
  • Alfred Böge, Wolfgang Böge, Klaus-Dieter Arnd u. a.: Handbuch Maschinenbau: Grundlagen und Anwendungen der Maschinenbau-Technik. Gebundene Ausgabe – 22. Auflage. Springer Verlag, 2014, ISBN 978-3-658-06597-3, S. B 14 – B 15 (Vorschau).
  • Ludwig Bergmann, Clemens Schaefer: Mechanik, Relativität, Wärme. Hrsg.: Thomas Dorfmüller (= Lehrbuch Der Experimentalphysik. Band 1). 11., völlig neubearbeitete Auflage. de Gruyter, Berlin 1998, ISBN 3-11-012870-5, S. 240 ff. (eingeschränkte Vorschau in der Google-Buchsuche).
  • Ekbert Hering, Rolf Martin, Martin Stohrer: Physik für Ingenieure. 11. Auflage. Springer, 2012, ISBN 978-3-642-22568-0, S. 51–52 (eingeschränkte Vorschau in der Google-Buchsuche).

jstor.org

  • Domenico Bertoloni Meli: The Relativization of Centrifugal Force. In: Isis. Band 81, Nr. 1, 1990, S. 23–43, JSTOR:234081.

mwn.de

hakenesch.userweb.mwn.de