Bloom, Thomas F. (2016). «A quantitative improvement for Roth's theorem on arithmetic progressions». Journal of the London Mathematical Society. Second Series 93 (3): 643–663. doi:10.1112/jlms/jdw010.
Ben J. Green et Terence Tao, « The primes contain arbitrarily long arithmetic progressions », Annals of Mathematics, vol. 167, 2008, p. 481-547 (arXiv math.NT/0404188).
Bloom, Thomas F.; Sisask, Olof (2020). «Breaking the logarithmic barrier in Roth's theorem on arithmetic progressions».
Bloom, Thomas F. (2016). «A quantitative improvement for Roth's theorem on arithmetic progressions». Journal of the London Mathematical Society. Second Series 93 (3): 643–663. doi:10.1112/jlms/jdw010.
Bloom, Thomas F.; Sisask, Olof (2023-02-14). «The Kelley–Meka bounds for sets free of three-term arithmetic progressions». Essential Number Theory2: 15–44. doi:10.2140/ent.2023.2.15.