Λήμμα των Σάπλεϊ-Φόλκμαν (Greek Wikipedia)

Analysis of information sources in references of the Wikipedia article "Λήμμα των Σάπλεϊ-Φόλκμαν" in Greek language version.

refsWebsite
Global rank Greek rank
451st place
2,456th place
2nd place
3rd place
6th place
5th place
14th place
37th place
149th place
206th place
1st place
1st place
415th place
412th place
7,008th place
5,747th place
low place
low place
low place
low place
5th place
8th place
2,569th place
1,114th place
305th place
354th place
565th place
581st place
3,707th place
low place
580th place
839th place
27th place
11th place
low place
low place
low place
low place
459th place
313th place

ams.org

archive.org

archive.today

berkeley.edu

elsa.berkeley.edu

cambridge.org

journals.cambridge.org

dictionaryofeconomics.com

doi.org

dx.doi.org

doi.org

mathprog.org

  • Lemaréchal (1973, p. 38): Lemaréchal, Claude (Απρίλιος 1973), Utilisation de la dualité dans les problémes non convexes [Use of duality for non–convex problems], Domaine de Voluceau, Rocquencourt, 78150 Le Chesnay, France: National Institute for Research in Computer Science and Control (IRIA), Laboratoire de recherche en informatique et automatique, σελ. 41 . Lemaréchal's experiments were discussed in later publications:

    Aardal (1995, pp. 2–3): Aardal, Karen (Μάρτιος 1995). «Optima interview Claude Lemaréchal». Optima: Mathematical Programming Society newsletter 45: 2–4. http://www.mathprog.org/Old-Optima-Issues/optima45.pdf. Ανακτήθηκε στις 2011-02-02. 

    Hiriart-Urruty & Lemaréchal (1993, pp. 143–145, 151, 153, and 156): Hiriart-Urruty, Jean-Baptiste· Lemaréchal, Claude (1993). «XII Abstract duality for practitioners». Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 306. Berlin: Springer-Verlag. σελίδες 136–193 (and bibliographical comments on pp.334–335). ISBN 3-540-56852-2. MR 1295240. 

michaelcarteronline.com

mit.edu

mitpress.mit.edu

web.mit.edu

  • Bertsekas (1996, pp. 364–381) acknowledging Ekeland (1999) on page 374 and Aubin & Ekeland (1976) on page 381:

    Bertsekas, Dimitri P. (1996). «5.6 Large scale separable integer programming problems and the exponential method of multipliers». Constrained optimization and Lagrange multiplier methods (Reprint of (1982) Academic Press έκδοση). Belmont, MA: Athena Scientific. σελίδες xiii+395. ISBN 1-886529-04-3. MR 0690767. 

    Bertsekas (1996, pp. 364–381) describes an application of Lagrangian dual methods to the scheduling of electrical power plants ("unit commitment problems"), where non-convexity appears because of integer constraints:

    Bertsekas, Dimitri P.; Lauer, Gregory S.; Sandell, Nils R., Jr.; Posbergh, Thomas A. (January 1983). «Optimal short-term scheduling of large-scale power systems». IEEE Transactions on Automatic Control AC-28 (Proceedings of 1981 IEEE Conference on Decision and Control, San Diego, CA, December 1981, pp.432–443): 1–11. http://web.mit.edu/dimitrib/www/Unit_Comm.pdf. Ανακτήθηκε στις 2011-02-02. 

    Ekeland, Ivar (1999) [1976]. «Appendix I: An a priori estimate in convex programming». Στο: Ekeland, Ivar· Temam, Roger. Convex analysis and variational problems. Classics in Applied Mathematics. 28 (Corrected reprinting of the North-Holland έκδοση). Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM). σελίδες 357–373. ISBN 0-89871-450-8. MR 1727362. 

projecteuclid.org

sciencedirect.com

springerlink.com

umich.edu

press.umich.edu

upf.edu

econ.upf.edu

web.archive.org

wikisource.org

en.wikisource.org

  • Samuelson (1950, pp. 359–360):

    It will be noted that any point where the indifference curves are convex rather than concave cannot be observed in a competitive market. Such points are shrouded in eternal darkness—unless we make our consumer a monopsonist and let him choose between goods lying on a very convex "budget curve" (along which he is affecting the price of what he buys). In this monopsony case, we could still deduce the slope of the man's indifference curve from the slope of the observed constraint at the equilibrium point.

    Samuelson, Paul A. (Νοέμβριος 1950). «The problem of integrability in utility theory». Economica. New Series 17 (68): 355–385. . "Eternal darkness" describes the Hell of John Milton's Paradise Lost, whose concavity is compared to the Serbonian Bog in Book II, lines 592–594:

    A gulf profound as that Serbonian Bog

    Betwixt Damiata and Mount Casius old,

    Where Armies whole have sunk.

    Milton's description of concavity serves as the literary epigraph prefacing chapter seven of Arrow & Hahn (1971, p. 169), "Markets with non-convex preferences and production", which presents the results of Starr (1969).

worldcat.org

  • Schneider (1993, p. 140) credits this result to Borwein & O'Brien (1978): Borwein, Jonathan M.; O'Brien, R. C. (1978). «Cancellation characterizes convexity». Nanta Mathematica (Nanyang University) 11: 100–102. ISSN 0077-2739. .  Schneider, Rolf (1993). Convex bodies: The Brunn–Minkowski theory. Encyclopedia of Mathematics and its Applications. 44. Cambridge: Cambridge University Press. σελίδες xiv+490. ISBN 0-521-35220-7. MR 1216521. 
  • Ekeland, Ivar (1974). «Une estimation a priori en programmation non convexe» (στα γαλλικά). Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences. Séries A et B 279: 149–151. ISSN 0151-0509. . 

yale.edu

cowles.econ.yale.edu

zentralblatt-math.org