Analysis of information sources in references of the Wikipedia article "Λήμμα των Σάπλεϊ-Φόλκμαν" in Greek language version.
Bertsekas, Dimitri P. (1996). «5.6 Large scale separable integer programming problems and the exponential method of multipliers». Constrained optimization and Lagrange multiplier methods (Reprint of (1982) Academic Press έκδοση). Belmont, MA: Athena Scientific. σελίδες xiii+395. ISBN 1-886529-04-3. MR 0690767.
Bertsekas (1996, pp. 364–381) describes an application of Lagrangian dual methods to the scheduling of electrical power plants ("unit commitment problems"), where non-convexity appears because of integer constraints:
Bertsekas, Dimitri P.; Lauer, Gregory S.; Sandell, Nils R., Jr.; Posbergh, Thomas A. (January 1983). «Optimal short-term scheduling of large-scale power systems». IEEE Transactions on Automatic Control AC-28 (Proceedings of 1981 IEEE Conference on Decision and Control, San Diego, CA, December 1981, pp.432–443): 1–11. http://web.mit.edu/dimitrib/www/Unit_Comm.pdf. Ανακτήθηκε στις 2011-02-02.
Ekeland, Ivar (1999) [1976]. «Appendix I: An a priori estimate in convex programming». Στο: Ekeland, Ivar· Temam, Roger. Convex analysis and variational problems. Classics in Applied Mathematics. 28 (Corrected reprinting of the North-Holland έκδοση). Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM). σελίδες 357–373. ISBN 0-89871-450-8. MR 1727362.Wold & Juréen (1953, p. 146): Wold, Herman· Juréen, Lars (in association with Wold) (1953). «8 Some further applications of preference fields (pp. 129–148)». Demand analysis: A study in econometrics. Wiley publications in statistics. New York: John Wiley and Sons, Inc. σελίδες xvi+358. MR 0064385.
Samuelson, Paul A. (Νοέμβριος 1950). «The problem of integrability in utility theory». Economica. New Series 17 (68): 355–385. ."Eternal darkness" describes the Hell of John Milton's Paradise Lost, whose concavity is compared to the Serbonian Bog in Book II, lines 592–594:It will be noted that any point where the indifference curves are convex rather than concave cannot be observed in a competitive market. Such points are shrouded in eternal darkness—unless we make our consumer a monopsonist and let him choose between goods lying on a very convex "budget curve" (along which he is affecting the price of what he buys). In this monopsony case, we could still deduce the slope of the man's indifference curve from the slope of the observed constraint at the equilibrium point.
Milton's description of concavity serves as the literary epigraph prefacing chapter seven of Arrow & Hahn (1971, p. 169), "Markets with non-convex preferences and production", which presents the results of Starr (1969).A gulf profound as that Serbonian Bog
Betwixt Damiata and Mount Casius old,
Where Armies whole have sunk.
Mas-Colell, Whinston & Green (1995, pp. 627–630): Mas-Colell, Andreu· Whinston, Michael D.· Green, Jerry R. (1995). «17.1 Large economies and nonconvexities». Microeconomic theory. Oxford University Press. ISBN 978-0-19-507340-9.
Mas-Colell (1985, pp. 52–55, 145–146, 152–153, and 274–275): Mas-Colell, Andreu (1985). «1.L Averages of sets». The Theory of general economic equilibrium: A differentiable approach. Econometric Society monographs. 9. Cambridge University Press. ISBN 0-521-26514-2. MR 1113262.
Hildenbrand (1974, pp. 37, 115–116, 122, and 168): Hildenbrand, Werner (1974). Core and equilibria of a large economy. Princeton studies in mathematical economics. 5. Princeton, N.J.: Princeton University Press. σελίδες viii+251. ISBN 978-0-691-04189-6. MR 0389160.
Arrow, Kenneth J.· Hahn, Frank H. (1980) [1971]. General competitive analysis. Advanced Textbooks in Economics. 12 (reprint of San Francisco, CA: Holden-Day, Inc. Mathematical Economics Texts 6 έκδοση). Amsterdam: North-Holland. ISBN 0-444-85497-5. MR 0439057.Ellickson (1994, pp. xviii, 306–310, 312, 328–329, 347, and 352): Ellickson, Bryan (1994). Competitive equilibrium: Theory and applications. Cambridge University Press. doi:10.2277/0521319889. ISBN 978-0-521-31988-1.
Aardal (1995, pp. 2–3): Aardal, Karen (Μάρτιος 1995). «Optima interview Claude Lemaréchal». Optima: Mathematical Programming Society newsletter 45: 2–4. http://www.mathprog.org/Old-Optima-Issues/optima45.pdf. Ανακτήθηκε στις 2011-02-02.
Hiriart-Urruty & Lemaréchal (1993, pp. 143–145, 151, 153, and 156): Hiriart-Urruty, Jean-Baptiste· Lemaréchal, Claude (1993). «XII Abstract duality for practitioners». Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 306. Berlin: Springer-Verlag. σελίδες 136–193 (and bibliographical comments on pp.334–335). ISBN 3-540-56852-2. MR 1295240.
Aubin & Ekeland (1976) and Ekeland (1999, pp. 362–364) also considered the convex closure of a problem of non-convex minimization—that is, the problem defined as the closed convex hull of the epigraph of the original problem. Their study of duality gaps was extended by Di Guglielmo to the quasiconvex closure of a non-convex minimization problem—that is, the problem defined as the closed convex hull of the lower level sets:
Di Guglielmo (1977, pp. 287–288): Di Guglielmo, F. (1977). «Nonconvex duality in multiobjective optimization». Mathematics of Operations Research 2 (3): 285–291. doi: . .Ekeland, Ivar (1999) [1976]. «Appendix I: An a priori estimate in convex programming». Στο: Ekeland, Ivar· Temam, Roger. Convex analysis and variational problems. Classics in Applied Mathematics. 28 (Corrected reprinting of the North-Holland έκδοση). Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM). σελίδες 357–373. ISBN 0-89871-450-8. MR 1727362.
Wold & Juréen (1953, p. 146): Wold, Herman· Juréen, Lars (in association with Wold) (1953). «8 Some further applications of preference fields (pp. 129–148)». Demand analysis: A study in econometrics. Wiley publications in statistics. New York: John Wiley and Sons, Inc. σελίδες xvi+358. MR 0064385.
Koopmans (1961, p. 478) and others—for example, Farrell (1959, pp. 390–391) and Farrell (1961a, p. 484), Bator (1961, pp. 482–483), Rothenberg (1960, p. 438), and Starr (1969, p. 26)—commented on Koopmans (1957, pp. 1–126, especially 9–16 [1.3 Summation of opportunity sets], 23–35 [1.6 Convex sets and the price implications of optimality], and 35–37 [1.7 The role of convexity assumptions in the analysis]):
Tjalling C., Koopmans (1957). «Allocation of resources and the price system». Στο: Koopmans, Tjalling C. Three essays on the state of economic science. New York: McGraw–Hill Book Company. σελίδες 1–126. ISBN 0-07-035337-9.
Mas-Colell, Whinston & Green (1995, pp. 627–630): Mas-Colell, Andreu· Whinston, Michael D.· Green, Jerry R. (1995). «17.1 Large economies and nonconvexities». Microeconomic theory. Oxford University Press. ISBN 978-0-19-507340-9.
Ellickson (1994, pp. xviii, 306–310, 312, 328–329, 347, and 352): Ellickson, Bryan (1994). Competitive equilibrium: Theory and applications. Cambridge University Press. doi:10.2277/0521319889. ISBN 978-0-521-31988-1.
The concept of a convex set (i.e., a set containing the segment connecting any two of its points) had repeatedly been placed at the center of economic theory before 1964. It appeared in a new light with the introduction of integration theory in the study of economic competition: If one associates with every agent of an economy an arbitrary set in the commodity space and if one averages those individual sets over a collection of insignificant agents, then the resulting set is necessarily convex. [Debreu appends this footnote: "On this direct consequence of a theorem of A. A. Lyapunov, see Vind (1964)."] But explanations of the ... functions of prices ... can be made to rest on the convexity of sets derived by that averaging process. Convexity in the commodity space obtained by aggregation over a collection of insignificant agents is an insight that economic theory owes ... to integration theory. [Italics added]
Debreu, Gérard (Μάρτιος 1991). «The Mathematization of economic theory». The American Economic Review 81 (Presidential address delivered at the 103rd meeting of the American Economic Association, 29 December 1990, Washington, DC): 1–7.
Koopmans (1961, p. 478) and others—for example, Farrell (1959, pp. 390–391) and Farrell (1961a, p. 484), Bator (1961, pp. 482–483), Rothenberg (1960, p. 438), and Starr (1969, p. 26)—commented on Koopmans (1957, pp. 1–126, especially 9–16 [1.3 Summation of opportunity sets], 23–35 [1.6 Convex sets and the price implications of optimality], and 35–37 [1.7 The role of convexity assumptions in the analysis]):
Tjalling C., Koopmans (1957). «Allocation of resources and the price system». Στο: Koopmans, Tjalling C. Three essays on the state of economic science. New York: McGraw–Hill Book Company. σελίδες 1–126. ISBN 0-07-035337-9.
Aubin & Ekeland (1976) and Ekeland (1999, pp. 362–364) also considered the convex closure of a problem of non-convex minimization—that is, the problem defined as the closed convex hull of the epigraph of the original problem. Their study of duality gaps was extended by Di Guglielmo to the quasiconvex closure of a non-convex minimization problem—that is, the problem defined as the closed convex hull of the lower level sets:
Di Guglielmo (1977, pp. 287–288): Di Guglielmo, F. (1977). «Nonconvex duality in multiobjective optimization». Mathematics of Operations Research 2 (3): 285–291. doi: . .Ekeland, Ivar (1999) [1976]. «Appendix I: An a priori estimate in convex programming». Στο: Ekeland, Ivar· Temam, Roger. Convex analysis and variational problems. Classics in Applied Mathematics. 28 (Corrected reprinting of the North-Holland έκδοση). Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM). σελίδες 357–373. ISBN 0-89871-450-8. MR 1727362.
Ellickson (1994, pp. xviii, 306–310, 312, 328–329, 347, and 352): Ellickson, Bryan (1994). Competitive equilibrium: Theory and applications. Cambridge University Press. doi:10.2277/0521319889. ISBN 978-0-521-31988-1.
Aardal (1995, pp. 2–3): Aardal, Karen (Μάρτιος 1995). «Optima interview Claude Lemaréchal». Optima: Mathematical Programming Society newsletter 45: 2–4. http://www.mathprog.org/Old-Optima-Issues/optima45.pdf. Ανακτήθηκε στις 2011-02-02.
Hiriart-Urruty & Lemaréchal (1993, pp. 143–145, 151, 153, and 156): Hiriart-Urruty, Jean-Baptiste· Lemaréchal, Claude (1993). «XII Abstract duality for practitioners». Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 306. Berlin: Springer-Verlag. σελίδες 136–193 (and bibliographical comments on pp.334–335). ISBN 3-540-56852-2. MR 1295240.
Bertsekas, Dimitri P. (1996). «5.6 Large scale separable integer programming problems and the exponential method of multipliers». Constrained optimization and Lagrange multiplier methods (Reprint of (1982) Academic Press έκδοση). Belmont, MA: Athena Scientific. σελίδες xiii+395. ISBN 1-886529-04-3. MR 0690767.
Bertsekas (1996, pp. 364–381) describes an application of Lagrangian dual methods to the scheduling of electrical power plants ("unit commitment problems"), where non-convexity appears because of integer constraints:
Bertsekas, Dimitri P.; Lauer, Gregory S.; Sandell, Nils R., Jr.; Posbergh, Thomas A. (January 1983). «Optimal short-term scheduling of large-scale power systems». IEEE Transactions on Automatic Control AC-28 (Proceedings of 1981 IEEE Conference on Decision and Control, San Diego, CA, December 1981, pp.432–443): 1–11. http://web.mit.edu/dimitrib/www/Unit_Comm.pdf. Ανακτήθηκε στις 2011-02-02.
Ekeland, Ivar (1999) [1976]. «Appendix I: An a priori estimate in convex programming». Στο: Ekeland, Ivar· Temam, Roger. Convex analysis and variational problems. Classics in Applied Mathematics. 28 (Corrected reprinting of the North-Holland έκδοση). Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM). σελίδες 357–373. ISBN 0-89871-450-8. MR 1727362.Samuelson, Paul A. (Νοέμβριος 1950). «The problem of integrability in utility theory». Economica. New Series 17 (68): 355–385. ."Eternal darkness" describes the Hell of John Milton's Paradise Lost, whose concavity is compared to the Serbonian Bog in Book II, lines 592–594:It will be noted that any point where the indifference curves are convex rather than concave cannot be observed in a competitive market. Such points are shrouded in eternal darkness—unless we make our consumer a monopsonist and let him choose between goods lying on a very convex "budget curve" (along which he is affecting the price of what he buys). In this monopsony case, we could still deduce the slope of the man's indifference curve from the slope of the observed constraint at the equilibrium point.
Milton's description of concavity serves as the literary epigraph prefacing chapter seven of Arrow & Hahn (1971, p. 169), "Markets with non-convex preferences and production", which presents the results of Starr (1969).A gulf profound as that Serbonian Bog
Betwixt Damiata and Mount Casius old,
Where Armies whole have sunk.