2577 Litva (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "2577 Litva" in English language version.

refsWebsite
Global rank English rank
18th place
17th place
2nd place
2nd place
5th place
5th place
69th place
59th place
1,397th place
1,604th place
75th place
83rd place
low place
low place
low place
low place
102nd place
76th place
207th place
136th place
9,017th place
8,535th place

arxiv.org

arxiv.org

lanl.arxiv.org

  • Central Bureau for Astronomical Telegrams (No.3765), 22 December 2013 for S/2012 (2577) 1:
    Reports the discovery, using the Keck II telescope (+ NIRC2 Laser-Guide-Star adaptive-optics system), of a second satellite of the Hungaria-type minor planet (2577) Litva. On 2012 June 22.3 UT, the satellite was found at p.a. 89 deg and separation 0".229 (projected separation 230 km). At that time, (2577) was 1.39 AU from the earth at magnitude V = 16.6. The satellite has been imaged in the K_p, H, and J bands. It was also detected on 2012 June 27, Aug. 11, and Aug. 16. Failure to detect it on 2012 July 15, despite excellent conditions, is now seen, in retrospect, to be due to being in conjunction with the primary. Follow-up observations were made at the Keck II telescope (+ LGS-AO) on 2013 Aug. 25 and 26 by Merline, Tamblyn, Conrad, and Tamblyn. Additional detections were made at the Large Binocular Telescope (adaptive secondary mirror and PISCES near-infrared camera at the "Right Front Bent" Gregorian focus) by Veillet and Arcidiacono on 2013 Oct. 12 and at the Keck II telescope (+ LGS-AO) by Grundy and Porter on 2013 Oct. 25, giving a total baseline of 490 days. The best-fit orbit analysis indicates that the third component has a semi-major axis of 378 km and an orbital period of 214 days. Despite the long baseline and the number of observational epochs, the phasing of the observations is such that a period of half this length cannot be ruled out. Either orbit would be among the longest periods known for main-belt binary/multiple systems and would also be the most loosely bound. It resembles other wide binary systems discovered by this same group (see: The Formation of the Wide Asynchronous Binary Asteroid Population). The third component is about 2.6 mag fainter than the combined brightness of the close inner pair. Using H magnitudes to scale the size of (2577) from other E-type objects of better-known size, the diameter of (2577) is estimated to be about 4 km, implying a size for the new satellite of 1.2 km. The first satellite of (2577) was discovered by Warner et al. (CBET 1715) in 2009, by lightcurve analysis, revealing eclipses/occultations by a close secondary, having an orbital period of 35.9 hr; their estimate of the size ratio was 0.35, meaning that the second component would be 1.4 km diameter, based on the 4-km assumption for (2577), above. This close inner pair is unresolvable in the imaging data reported above. Warner et al. (2009, Minor Planet Bull. 36, 165) suggested that a residual 5.7-hr lightcurve period may be due to rotation by a third body, an idea further bolstered by Pravec et al. (2012, Icarus 218, 125), who found that this period was still evident even when the secondary object was in eclipse. The observing program described here has given high priority to objects suspected of having satellites. To the authors' knowledge, S/2012 (2577) 1 is the only satellite to have been predicted prior to being found by targeted imaging."
    Reported by W. J. Merline, Southwest Research Institute (SwRI); P. M. Tamblyn, Binary Astronomy, LLC, Dillon, CO, U.S.A., and SwRI; B. D. Warner, Center for Solar System Studies, Landers, CA, USA; P. Pravec, Ondrejov Observatory; J. P. Tamblyn, Binary Astronomy, LLC, Dillon, CO, U.S.A.; C. Neyman, W. M. Keck Observatory; A. R. Conrad, Max Planck Institute for Astronomy; W. M. Owen, Jet Propulsion Laboratory; B. Carry, Institut de Mecanique Celeste et de Calcul des Ephemerides, Paris Observatory; J. D. Drummond, Starfire Optical Range, Air Force Research Laboratory, Kirtland Air Force Base, Albuquerque, NM, U.S.A.; C. R. Chapman and B. L. Enke, SwRI; W. M. Grundy, Lowell Observatory; C. Veillet, Large Binocular Telescope Observatory (LBTO); S. B. Porter, Lowell Observatory; C. Arcidiacono, Astronomical Observatory of Bologna, Istituto Nazionale di Astrofisica; J. C. Christou, LBTO; D. D. Durda, SwRI; A. W. Harris, "More Data!", La Canada, CA, USA; H. A. Weaver, Applied Physics Laboratory, Johns Hopkins University; C. Dumas, European Southern Observatory, Chile; D. Terrell, Sonoita Research Observatory and SwRI; and P. Maley, Houston, TX, USA

doi.org

handle.net

hdl.handle.net

harvard.edu

adsabs.harvard.edu

ui.adsabs.harvard.edu

johnstonsarchive.net

minorplanet.info

minorplanetcenter.net

nasa.gov

ssd.jpl.nasa.gov

  • "JPL Small-Body Database Browser: 2577 Litva (1975 EE3)" (2017-06-06 last obs.). Jet Propulsion Laboratory. Retrieved 14 June 2017.

obsunige.ch

psu.edu

citeseerx.ist.psu.edu

worldcat.org

search.worldcat.org