Analysis of information sources in references of the Wikipedia article "3,4-Methylenedioxyamphetamine" in English language version.
In a placebo-controlled, double-blind, within-subjects study, 12 individuals received a single 98 mg/70 kg bw dose of MDA. This is the molar equivalent of 105 mg/ 70 kg bw MDMA, a well-studied dose. [...] MDA increased cortisol by 16.39 ug/dL (95%CI: 13.03-19.74, P < 1e-3) and prolactin by 18.37 ng/mL (95%CI: 7.39-29.35, P < 1e-3). These hormonal changes are comparable to those seen after MDMA. Heart rate increased by 9.05 bpm (95%CI: 6.10-11.99, P < 1e-5) and blood pressure increased by 18.98 / 12.73 mm Hg (Systolic 95%CI: 16.47 - 21.49, P < 1e-7; Diastolic 95%CI: 10.82 - 14.63, P < 1e-4). [...] There were robust self-report VAS changes in both MDMA-like (e.g., "closeness to others") and hallucinogen-like (e.g., "familiar things seem unfamiliar", time distortions, closed-eye visuals) effects that were generally similar to those seen after MDMA. [...] MDA is a psychoactive sympathomimetic phenethylamine with effects similar to MDMA. Although differences may exist in the magnitude of physiological effects, the overall profiles appear remarkably similar.
Interestingly, the concentrations of amphetamine found to be necessary to activate TAAR1 are in line with what was found in drug abusers [3, 51, 52]. Thus, it is likely that some of the effects produced by amphetamines could be mediated by TAAR1. Indeed, in a study in mice, MDMA effects were found to be mediated in part by TAAR1, in a sense that MDMA auto-inhibits its neurochemical and functional actions [46]. Based on this and other studies (see other section), it has been suggested that TAAR1 could play a role in reward mechanisms and that amphetamine activity on TAAR1 counteracts their known behavioral and neurochemical effects mediated via dopamine neurotransmission.
Another feature that distinguishes [synthetic cathinones (SCs)] from amphetamines is their negligible interaction with the trace amine associated receptor 1 (TAAR1). Activation of this receptor reduces the activity of dopaminergic neurones, thereby reducing psychostimulatory effects and addictive potential (Miller, 2011; Simmler et al., 2016). Amphetamines are potent agonists of this receptor, making them likely to self‐inhibit their stimulating effects. In contrast, SCs show negligible activity towards TAAR1 (Kolaczynska et al., 2021; Rickli et al., 2015; Simmler et al., 2014, 2016). [...] It is worth noting, however, that for TAAR1 there is considerable species variability in its interaction with ligands, and it is possible that the in vitro activity of [rodent TAAR1 agonists] may not translate into activity in the human body (Simmler et al., 2016). The lack of self‐regulation by TAAR1 may partly explain the higher addictive potential of SCs compared to amphetamines (Miller, 2011; Simmler et al., 2013).
β-Keto-analogue cathinones also exhibited approximately 10-fold lower affinity for the TA1 receptor compared with their respective non-β-keto amphetamines. [...] Activation of TA1 receptors negatively modulates dopaminergic neurotransmission. Importantly, methamphetamine decreased DAT surface expression via a TA1 receptor-mediated mechanism and thereby reduced the presence of its own pharmacological target (Xie and Miller, 2009). MDMA and amphetamine have been shown to produce enhanced DA and 5-HT release and locomotor activity in TA1 receptor knockout mice compared with wild-type mice (Lindemann et al., 2008; Di Cara et al., 2011). Because methamphetamine and MDMA auto-inhibit their neurochemical and functional effects via TA1 receptors, low affinity for these receptors may result in stronger effects on monoamine systems by cathinones compared with the classic amphetamines.
Knowledge of MDA and HMA kinetics in humans is limited to data from MDMA administration studies where minimal formation of these compounds likely leads to inaccurate parameter estimation. We administered a single [98 mg/70 kg body weight] oral dose of MDA to participants in a controlled setting to characterize plasma MDA pharmacokinetics for the first time. [...] Cmax and AUC0-∞ for MDA were 229 ± 39 ng/mL (mean ± SD) and 3636 ± 958 for MDA and 92 ± 61 ng/mL and 1544 ± 741 for the metabolite HMA. Total MDA clearance was 30267 ± 8214 mL/min. There was considerable between-subject variation in metabolite exposure: HMA Cmax and AUC varied over 7-fold and 4-fold, respectively, between the highest and lowest individuals. [...] Pharmacokinetics of MDA resemble those of an iso-molar dose of MDMA, suggesting differences in duration of acute effects between MDA and MDMA are not due to kinetic differences.
Another feature that distinguishes [synthetic cathinones (SCs)] from amphetamines is their negligible interaction with the trace amine associated receptor 1 (TAAR1). Activation of this receptor reduces the activity of dopaminergic neurones, thereby reducing psychostimulatory effects and addictive potential (Miller, 2011; Simmler et al., 2016). Amphetamines are potent agonists of this receptor, making them likely to self‐inhibit their stimulating effects. In contrast, SCs show negligible activity towards TAAR1 (Kolaczynska et al., 2021; Rickli et al., 2015; Simmler et al., 2014, 2016). [...] It is worth noting, however, that for TAAR1 there is considerable species variability in its interaction with ligands, and it is possible that the in vitro activity of [rodent TAAR1 agonists] may not translate into activity in the human body (Simmler et al., 2016). The lack of self‐regulation by TAAR1 may partly explain the higher addictive potential of SCs compared to amphetamines (Miller, 2011; Simmler et al., 2013).
β-Keto-analogue cathinones also exhibited approximately 10-fold lower affinity for the TA1 receptor compared with their respective non-β-keto amphetamines. [...] Activation of TA1 receptors negatively modulates dopaminergic neurotransmission. Importantly, methamphetamine decreased DAT surface expression via a TA1 receptor-mediated mechanism and thereby reduced the presence of its own pharmacological target (Xie and Miller, 2009). MDMA and amphetamine have been shown to produce enhanced DA and 5-HT release and locomotor activity in TA1 receptor knockout mice compared with wild-type mice (Lindemann et al., 2008; Di Cara et al., 2011). Because methamphetamine and MDMA auto-inhibit their neurochemical and functional effects via TA1 receptors, low affinity for these receptors may result in stronger effects on monoamine systems by cathinones compared with the classic amphetamines.
β-Keto-analogue cathinones also exhibited approximately 10-fold lower affinity for the TA1 receptor compared with their respective non-β-keto amphetamines. [...] Activation of TA1 receptors negatively modulates dopaminergic neurotransmission. Importantly, methamphetamine decreased DAT surface expression via a TA1 receptor-mediated mechanism and thereby reduced the presence of its own pharmacological target (Xie and Miller, 2009). MDMA and amphetamine have been shown to produce enhanced DA and 5-HT release and locomotor activity in TA1 receptor knockout mice compared with wild-type mice (Lindemann et al., 2008; Di Cara et al., 2011). Because methamphetamine and MDMA auto-inhibit their neurochemical and functional effects via TA1 receptors, low affinity for these receptors may result in stronger effects on monoamine systems by cathinones compared with the classic amphetamines.
In a placebo-controlled, double-blind, within-subjects study, 12 individuals received a single 98 mg/70 kg bw dose of MDA. This is the molar equivalent of 105 mg/ 70 kg bw MDMA, a well-studied dose. [...] MDA increased cortisol by 16.39 ug/dL (95%CI: 13.03-19.74, P < 1e-3) and prolactin by 18.37 ng/mL (95%CI: 7.39-29.35, P < 1e-3). These hormonal changes are comparable to those seen after MDMA. Heart rate increased by 9.05 bpm (95%CI: 6.10-11.99, P < 1e-5) and blood pressure increased by 18.98 / 12.73 mm Hg (Systolic 95%CI: 16.47 - 21.49, P < 1e-7; Diastolic 95%CI: 10.82 - 14.63, P < 1e-4). [...] There were robust self-report VAS changes in both MDMA-like (e.g., "closeness to others") and hallucinogen-like (e.g., "familiar things seem unfamiliar", time distortions, closed-eye visuals) effects that were generally similar to those seen after MDMA. [...] MDA is a psychoactive sympathomimetic phenethylamine with effects similar to MDMA. Although differences may exist in the magnitude of physiological effects, the overall profiles appear remarkably similar.
Knowledge of MDA and HMA kinetics in humans is limited to data from MDMA administration studies where minimal formation of these compounds likely leads to inaccurate parameter estimation. We administered a single [98 mg/70 kg body weight] oral dose of MDA to participants in a controlled setting to characterize plasma MDA pharmacokinetics for the first time. [...] Cmax and AUC0-∞ for MDA were 229 ± 39 ng/mL (mean ± SD) and 3636 ± 958 for MDA and 92 ± 61 ng/mL and 1544 ± 741 for the metabolite HMA. Total MDA clearance was 30267 ± 8214 mL/min. There was considerable between-subject variation in metabolite exposure: HMA Cmax and AUC varied over 7-fold and 4-fold, respectively, between the highest and lowest individuals. [...] Pharmacokinetics of MDA resemble those of an iso-molar dose of MDMA, suggesting differences in duration of acute effects between MDA and MDMA are not due to kinetic differences.