Borovik 2006; "The environment which directed the evolution of our brain never provided our ancestors with four-dimensional experiences.... [Nevertheless] we humans are blessed with a remarkable piece of mathematical software for image processing hardwired into our brains. Coxeter made full use of it, and expected the reader to use it.... Visualization is one of the most powerful interiorization techniques. It anchors mathematical concepts and ideas into one of the most powerful parts of our brain, the visual processing module. Coxeter Theory [of polytopes generated by] finite reflection groups allow[s] an approach to their study based on a systematic reduction of complex geometric configurations to much simpler two- and three-dimensional special cases." Borovik, Alexandre (2006). "Coxeter Theory: The Cognitive Aspects". In Davis, Chandler; Ellers, Erich (eds.). The Coxeter Legacy. Providence, Rhode Island: American Mathematical Society. pp. 17–43. ISBN978-0821837221.
Banchoff 2013, studied the decomposition of regular 4-polytopes into honeycombs of tori tiling the Clifford torus, showed how the honeycombs correspond to Hopf fibrations, and made decompositions composed of meridian and equatorial cell rings with illustrations. Banchoff, Thomas F. (2013). "Torus Decompostions of Regular Polytopes in 4-space". In Senechal, Marjorie (ed.). Shaping Space. Springer New York. pp. 257–266. doi:10.1007/978-0-387-92714-5_20. ISBN978-0-387-92713-8.
Waegell & Aravind 2009, pp. 3–4, §3.2 The 75 bases of the 600-cell; In the 600-cell the configuration's "points" and "lines" are axes ("rays") and 16-cells ("bases"), respectively. Waegell, Mordecai; Aravind, P. K. (2009-11-12). "Critical noncolorings of the 600-cell proving the Bell-Kochen-Specker theorem". Journal of Physics A. 43 (10): 105304. arXiv:0911.2289. doi:10.1088/1751-8113/43/10/105304. S2CID118501180.
Zamboj 2021, pp. 10–11, §Hopf coordinates. Zamboj, Michal (8 Jan 2021). "Synthetic construction of the Hopf fibration in a double orthogonal projection of 4-space". Journal of Computational Design and Engineering. 8 (3): 836–854. arXiv:2003.09236. doi:10.1093/jcde/qwab018.
Kim & Rote 2016, pp. 8–10, Relations to Clifford Parallelism. Kim, Heuna; Rote, G. (2016). "Congruence Testing of Point Sets in 4 Dimensions". arXiv:1603.07269 [cs.CG].
Waegell & Aravind 2009, p. 5, §3.4. The 24-cell: points, lines, and Reye's configuration; Here Reye's "points" and "lines" are axes and hexagons, respectively. The dual hexagon planes are not orthogonal to each other, only their dual axis pairs. Dual hexagon pairs do not occur in individual 24-cells, only between 24-cells in the 600-cell. Waegell, Mordecai; Aravind, P. K. (2009-11-12). "Critical noncolorings of the 600-cell proving the Bell-Kochen-Specker theorem". Journal of Physics A. 43 (10): 105304. arXiv:0911.2289. doi:10.1088/1751-8113/43/10/105304. S2CID118501180.
Copher 2019, p. 6, §3.2 Theorem 3.4. Copher, Jessica (2019). "Sums and Products of Regular Polytopes' Squared Chord Lengths". arXiv:1903.06971 [math.MG].
Kim & Rote 2016, p. 7, §6 Angles between two Planes in 4-Space; "In four (and higher) dimensions, we need two angles to fix the relative position between two planes. (More generally, k angles are defined between k-dimensional subspaces.)" Kim, Heuna; Rote, G. (2016). "Congruence Testing of Point Sets in 4 Dimensions". arXiv:1603.07269 [cs.CG].
Zamboj 2021. Zamboj, Michal (8 Jan 2021). "Synthetic construction of the Hopf fibration in a double orthogonal projection of 4-space". Journal of Computational Design and Engineering. 8 (3): 836–854. arXiv:2003.09236. doi:10.1093/jcde/qwab018.
Zamboj 2021, pp. 6–12, §2 Mathematical background. Zamboj, Michal (8 Jan 2021). "Synthetic construction of the Hopf fibration in a double orthogonal projection of 4-space". Journal of Computational Design and Engineering. 8 (3): 836–854. arXiv:2003.09236. doi:10.1093/jcde/qwab018.
Dechant 2017, pp. 410–419, §6. The Coxeter Plane; see p. 416, Table 1. Summary of the factorisations of the Coxeter versors of the 4D root systems; "Coxeter (reflection) groups in the Clifford framework ... afford a uniquely simple prescription for reflections. Via the Cartan-Dieudonné theorem, performing two reflections successively generates a rotation, which in Clifford algebra is described by a spinor that is simply the geometric product of the two vectors generating the reflections." Dechant, Pierre-Philippe (2017). "The E8 Geometry from a Clifford Perspective". Advances in Applied Clifford Algebras. 27: 397–421. arXiv:1603.04805. doi:10.1007/s00006-016-0675-9. S2CID253595386.
Kim & Rote 2016, pp. 13–14, §8.2 Equivalence of an Invariant Family and a Hopf Bundle. Kim, Heuna; Rote, G. (2016). "Congruence Testing of Point Sets in 4 Dimensions". arXiv:1603.07269 [cs.CG].
Kim & Rote 2016, p. 12-16, §8 The Construction of Hopf Fibrations; see §8.3. Kim, Heuna; Rote, G. (2016). "Congruence Testing of Point Sets in 4 Dimensions". arXiv:1603.07269 [cs.CG].
Kim & Rote 2016, p. 14, §8.3 Corollary 9. Every great circle belongs to a unique right [(and left)] Hopf bundle. Kim, Heuna; Rote, G. (2016). "Congruence Testing of Point Sets in 4 Dimensions". arXiv:1603.07269 [cs.CG].
Kim & Rote 2016, pp. 14–16, §8.3 Properties of the Hopf Fibration. Kim, Heuna; Rote, G. (2016). "Congruence Testing of Point Sets in 4 Dimensions". arXiv:1603.07269 [cs.CG].
Kim & Rote 2016, p. 8, Left and Right Pairs of Isoclinic Planes. Kim, Heuna; Rote, G. (2016). "Congruence Testing of Point Sets in 4 Dimensions". arXiv:1603.07269 [cs.CG].
Dechant 2021, Abstract; "[E]very 3D root system allows the construction of a corresponding 4D root system via an 'induction theorem'. In this paper, we look at the icosahedral case of H3 → H4 in detail and perform the calculations explicitly. Clifford algebra is used to perform group theoretic calculations based on the versor theorem and the Cartan-Dieudonné theorem ... shed[ding] light on geometric aspects of the H4 root system (the 600-cell) as well as other related polytopes and their symmetries ... including the construction of the Coxeter plane, which is used for visualising the complementary pairs of invariant polytopes.... This approach therefore constitutes a more systematic and general way of performing calculations concerning groups, in particular reflection groups and root systems, in a Clifford algebraic framework." Dechant, Pierre-Philippe (2021). "Clifford Spinors and Root System Induction: H4 and the Grand Antiprism". Advances in Applied Clifford Algebras. 31 (3). Springer Science and Business Media. arXiv:2103.07817. doi:10.1007/s00006-021-01139-2. S2CID232232920.
Sikiric, Mathieu; Myrvold, Wendy (2007). "The special cuts of 600-cell". Beiträge zur Algebra und Geometrie. 49 (1). arXiv:0708.3443.
books.google.com
Oss 1899; van Oss does not mention the arc distances between vertices of the 600-cell. Oss, Salomon Levi van (1899). "Das regelmässige Sechshundertzell und seine selbstdeckenden Bewegungen". Verhandelingen der Koninklijke (Nederlandse) Akademie van Wetenschappen, Sectie 1 (Afdeeling Natuurkunde). 7 (1). Amsterdam: 1–18.
Waegell & Aravind 2009, pp. 3–4, §3.2 The 75 bases of the 600-cell; In the 600-cell the configuration's "points" and "lines" are axes ("rays") and 16-cells ("bases"), respectively. Waegell, Mordecai; Aravind, P. K. (2009-11-12). "Critical noncolorings of the 600-cell proving the Bell-Kochen-Specker theorem". Journal of Physics A. 43 (10): 105304. arXiv:0911.2289. doi:10.1088/1751-8113/43/10/105304. S2CID118501180.
Zamboj 2021, pp. 10–11, §Hopf coordinates. Zamboj, Michal (8 Jan 2021). "Synthetic construction of the Hopf fibration in a double orthogonal projection of 4-space". Journal of Computational Design and Engineering. 8 (3): 836–854. arXiv:2003.09236. doi:10.1093/jcde/qwab018.
Steinbach 1997, p. 23, Figure 3; Steinbach derived a formula relating the diagonals and edge lengths of successive regular polygons, and illustrated it with a "fan of chords" diagram like the one here. Steinbach, Peter (1997). "Golden fields: A case for the Heptagon". Mathematics Magazine. 70 (Feb 1997): 22–31. doi:10.1080/0025570X.1997.11996494. JSTOR2691048.
Waegell & Aravind 2009, p. 5, §3.4. The 24-cell: points, lines, and Reye's configuration; Here Reye's "points" and "lines" are axes and hexagons, respectively. The dual hexagon planes are not orthogonal to each other, only their dual axis pairs. Dual hexagon pairs do not occur in individual 24-cells, only between 24-cells in the 600-cell. Waegell, Mordecai; Aravind, P. K. (2009-11-12). "Critical noncolorings of the 600-cell proving the Bell-Kochen-Specker theorem". Journal of Physics A. 43 (10): 105304. arXiv:0911.2289. doi:10.1088/1751-8113/43/10/105304. S2CID118501180.
Mamone, Pileio & Levitt 2010, p. 1433, §4.1; A Cartesian 4-coordinate point (w,x,y,z) is a vector in 4D space from (0,0,0,0). Four-dimensional real space is a vector space: any two vectors can be added or multiplied by a scalar to give another vector. Quaternions extend the vectorial structure of 4D real space by allowing the multiplication of two 4D vectors and according to Mamone, Salvatore; Pileio, Giuseppe; Levitt, Malcolm H. (2010). "Orientational Sampling Schemes Based on Four Dimensional Polytopes". Symmetry. 2 (3): 1423–1449. Bibcode:2010Symm....2.1423M. doi:10.3390/sym2031423.
Banchoff 2013, studied the decomposition of regular 4-polytopes into honeycombs of tori tiling the Clifford torus, showed how the honeycombs correspond to Hopf fibrations, and made decompositions composed of meridian and equatorial cell rings with illustrations. Banchoff, Thomas F. (2013). "Torus Decompostions of Regular Polytopes in 4-space". In Senechal, Marjorie (ed.). Shaping Space. Springer New York. pp. 257–266. doi:10.1007/978-0-387-92714-5_20. ISBN978-0-387-92713-8.
Zamboj 2021. Zamboj, Michal (8 Jan 2021). "Synthetic construction of the Hopf fibration in a double orthogonal projection of 4-space". Journal of Computational Design and Engineering. 8 (3): 836–854. arXiv:2003.09236. doi:10.1093/jcde/qwab018.
Sadoc & Charvolin 2009, §1.2 The curved space approach; studies the helical orientation of molecules in crystal structures and their imperfect packings ("frustrations") in 3-dimensional space. "The frustration, which arises when the molecular orientation is transported along the two [circular] AB paths of figure 1 [helix], is imposed by the very topological nature of the Euclidean space R3. It would not occur if the molecules were embedded in the non-Euclidean space of the 3-sphere S3, or hypersphere. This space with a homogeneous positive curvature can indeed be described by equidistant and uniformly twisted fibers,[af] along which the molecules can be aligned without any conflict between compactness and torsion.... The fibres of this Hopf fibration are great circles of S3, the whole family of which is also called the Clifford parallels. Two of these fibers are C∞ symmetry axes for the whole fibration; each fibre makes one turn around each axis and regularly rotates when moving from one axis to another.[bf] These fibers build a double twist configuration while staying parallel, i.e. without any frustration, in the whole volume of S3.[bg] They can therefore be used as models to study the condensation of long molecules in the presence of a double twist constraint." Sadoc, J F; Charvolin, J (2009). "3-sphere fibrations: A tool for analyzing twisted materials in condensed matter". Journal of Physics A. 42 (46): 465209. Bibcode:2009JPhA...42T5209S. doi:10.1088/1751-8113/42/46/465209. S2CID120065066.
Miyazaki 1990; Miyazaki showed that the surface envelope of the 600-cell can be realized architecturally in our ordinary 3-dimensional space as physical buildings (geodesic domes). Miyazaki, Koji (1990). "Primary Hypergeodesic Polytopes". International Journal of Space Structures. 5 (3–4): 309–323. doi:10.1177/026635119000500312. S2CID113846838.
Zamboj 2021, pp. 6–12, §2 Mathematical background. Zamboj, Michal (8 Jan 2021). "Synthetic construction of the Hopf fibration in a double orthogonal projection of 4-space". Journal of Computational Design and Engineering. 8 (3): 836–854. arXiv:2003.09236. doi:10.1093/jcde/qwab018.
Dechant 2017, pp. 410–419, §6. The Coxeter Plane; see p. 416, Table 1. Summary of the factorisations of the Coxeter versors of the 4D root systems; "Coxeter (reflection) groups in the Clifford framework ... afford a uniquely simple prescription for reflections. Via the Cartan-Dieudonné theorem, performing two reflections successively generates a rotation, which in Clifford algebra is described by a spinor that is simply the geometric product of the two vectors generating the reflections." Dechant, Pierre-Philippe (2017). "The E8 Geometry from a Clifford Perspective". Advances in Applied Clifford Algebras. 27: 397–421. arXiv:1603.04805. doi:10.1007/s00006-016-0675-9. S2CID253595386.
Dorst 2019, p. 44, §1. Villarceau Circles; "In mathematics, the path that the (1, 1) knot on the torus traces is also known as a Villarceau circle. Villarceau circles are usually introduced as two intersecting circles that are the cross-section of a torus by a well-chosen plane cutting it. Picking one such circle and rotating it around the torus axis, the resulting family of circles can be used to rule the torus. By nesting tori smartly, the collection of all such circles then form a Hopf fibration.... we prefer to consider the Villarceau circle as the (1, 1) torus knot rather than as a planar cut." Dorst, Leo (2019). "Conformal Villarceau Rotors". Advances in Applied Clifford Algebras. 29 (44). doi:10.1007/s00006-019-0960-5. S2CID253592159.
Mebius 2015, p. 1, "Quaternion algebra is the tool par excellence for the treatment of three- and four- dimensional (3D and 4D) rotations. Obviously only 3D and by implication 2D rotations have an everyday practical meaning, but the theory of 4D rotations turns out to offer the easiest road to the representation of 3D rotations by quaternions.". Mebius, Johan (July 2015) [11 Jan 1994]. Applications of Quaternions to Dynamical Simulation, Computer Graphics and Biomechanics (Thesis). Delft University of Technology. doi:10.13140/RG.2.1.3310.3205.
Dechant 2021, Abstract; "[E]very 3D root system allows the construction of a corresponding 4D root system via an 'induction theorem'. In this paper, we look at the icosahedral case of H3 → H4 in detail and perform the calculations explicitly. Clifford algebra is used to perform group theoretic calculations based on the versor theorem and the Cartan-Dieudonné theorem ... shed[ding] light on geometric aspects of the H4 root system (the 600-cell) as well as other related polytopes and their symmetries ... including the construction of the Coxeter plane, which is used for visualising the complementary pairs of invariant polytopes.... This approach therefore constitutes a more systematic and general way of performing calculations concerning groups, in particular reflection groups and root systems, in a Clifford algebraic framework." Dechant, Pierre-Philippe (2021). "Clifford Spinors and Root System Induction: H4 and the Grand Antiprism". Advances in Applied Clifford Algebras. 31 (3). Springer Science and Business Media. arXiv:2103.07817. doi:10.1007/s00006-021-01139-2. S2CID232232920.
Mamone, Pileio & Levitt 2010, p. 1433, §4.1; A Cartesian 4-coordinate point (w,x,y,z) is a vector in 4D space from (0,0,0,0). Four-dimensional real space is a vector space: any two vectors can be added or multiplied by a scalar to give another vector. Quaternions extend the vectorial structure of 4D real space by allowing the multiplication of two 4D vectors and according to Mamone, Salvatore; Pileio, Giuseppe; Levitt, Malcolm H. (2010). "Orientational Sampling Schemes Based on Four Dimensional Polytopes". Symmetry. 2 (3): 1423–1449. Bibcode:2010Symm....2.1423M. doi:10.3390/sym2031423.
Sadoc & Charvolin 2009, §1.2 The curved space approach; studies the helical orientation of molecules in crystal structures and their imperfect packings ("frustrations") in 3-dimensional space. "The frustration, which arises when the molecular orientation is transported along the two [circular] AB paths of figure 1 [helix], is imposed by the very topological nature of the Euclidean space R3. It would not occur if the molecules were embedded in the non-Euclidean space of the 3-sphere S3, or hypersphere. This space with a homogeneous positive curvature can indeed be described by equidistant and uniformly twisted fibers,[af] along which the molecules can be aligned without any conflict between compactness and torsion.... The fibres of this Hopf fibration are great circles of S3, the whole family of which is also called the Clifford parallels. Two of these fibers are C∞ symmetry axes for the whole fibration; each fibre makes one turn around each axis and regularly rotates when moving from one axis to another.[bf] These fibers build a double twist configuration while staying parallel, i.e. without any frustration, in the whole volume of S3.[bg] They can therefore be used as models to study the condensation of long molecules in the presence of a double twist constraint." Sadoc, J F; Charvolin, J (2009). "3-sphere fibrations: A tool for analyzing twisted materials in condensed matter". Journal of Physics A. 42 (46): 465209. Bibcode:2009JPhA...42T5209S. doi:10.1088/1751-8113/42/46/465209. S2CID120065066.
Sadoc & Charvolin 2009, §1.2 The curved space approach; studies the helical orientation of molecules in crystal structures and their imperfect packings ("frustrations") in 3-dimensional space. "The frustration, which arises when the molecular orientation is transported along the two [circular] AB paths of figure 1 [helix], is imposed by the very topological nature of the Euclidean space R3. It would not occur if the molecules were embedded in the non-Euclidean space of the 3-sphere S3, or hypersphere. This space with a homogeneous positive curvature can indeed be described by equidistant and uniformly twisted fibers,[af] along which the molecules can be aligned without any conflict between compactness and torsion.... The fibres of this Hopf fibration are great circles of S3, the whole family of which is also called the Clifford parallels. Two of these fibers are C∞ symmetry axes for the whole fibration; each fibre makes one turn around each axis and regularly rotates when moving from one axis to another.[bf] These fibers build a double twist configuration while staying parallel, i.e. without any frustration, in the whole volume of S3.[bg] They can therefore be used as models to study the condensation of long molecules in the presence of a double twist constraint." Sadoc, J F; Charvolin, J (2009). "3-sphere fibrations: A tool for analyzing twisted materials in condensed matter". Journal of Physics A. 42 (46): 465209. Bibcode:2009JPhA...42T5209S. doi:10.1088/1751-8113/42/46/465209. S2CID120065066.
Steinbach 1997, p. 23, Figure 3; Steinbach derived a formula relating the diagonals and edge lengths of successive regular polygons, and illustrated it with a "fan of chords" diagram like the one here. Steinbach, Peter (1997). "Golden fields: A case for the Heptagon". Mathematics Magazine. 70 (Feb 1997): 22–31. doi:10.1080/0025570X.1997.11996494. JSTOR2691048.
Waegell & Aravind 2009, pp. 3–4, §3.2 The 75 bases of the 600-cell; In the 600-cell the configuration's "points" and "lines" are axes ("rays") and 16-cells ("bases"), respectively. Waegell, Mordecai; Aravind, P. K. (2009-11-12). "Critical noncolorings of the 600-cell proving the Bell-Kochen-Specker theorem". Journal of Physics A. 43 (10): 105304. arXiv:0911.2289. doi:10.1088/1751-8113/43/10/105304. S2CID118501180.
Waegell & Aravind 2009, p. 5, §3.4. The 24-cell: points, lines, and Reye's configuration; Here Reye's "points" and "lines" are axes and hexagons, respectively. The dual hexagon planes are not orthogonal to each other, only their dual axis pairs. Dual hexagon pairs do not occur in individual 24-cells, only between 24-cells in the 600-cell. Waegell, Mordecai; Aravind, P. K. (2009-11-12). "Critical noncolorings of the 600-cell proving the Bell-Kochen-Specker theorem". Journal of Physics A. 43 (10): 105304. arXiv:0911.2289. doi:10.1088/1751-8113/43/10/105304. S2CID118501180.
Sadoc & Charvolin 2009, §1.2 The curved space approach; studies the helical orientation of molecules in crystal structures and their imperfect packings ("frustrations") in 3-dimensional space. "The frustration, which arises when the molecular orientation is transported along the two [circular] AB paths of figure 1 [helix], is imposed by the very topological nature of the Euclidean space R3. It would not occur if the molecules were embedded in the non-Euclidean space of the 3-sphere S3, or hypersphere. This space with a homogeneous positive curvature can indeed be described by equidistant and uniformly twisted fibers,[af] along which the molecules can be aligned without any conflict between compactness and torsion.... The fibres of this Hopf fibration are great circles of S3, the whole family of which is also called the Clifford parallels. Two of these fibers are C∞ symmetry axes for the whole fibration; each fibre makes one turn around each axis and regularly rotates when moving from one axis to another.[bf] These fibers build a double twist configuration while staying parallel, i.e. without any frustration, in the whole volume of S3.[bg] They can therefore be used as models to study the condensation of long molecules in the presence of a double twist constraint." Sadoc, J F; Charvolin, J (2009). "3-sphere fibrations: A tool for analyzing twisted materials in condensed matter". Journal of Physics A. 42 (46): 465209. Bibcode:2009JPhA...42T5209S. doi:10.1088/1751-8113/42/46/465209. S2CID120065066.
Miyazaki 1990; Miyazaki showed that the surface envelope of the 600-cell can be realized architecturally in our ordinary 3-dimensional space as physical buildings (geodesic domes). Miyazaki, Koji (1990). "Primary Hypergeodesic Polytopes". International Journal of Space Structures. 5 (3–4): 309–323. doi:10.1177/026635119000500312. S2CID113846838.
Dechant 2017, pp. 410–419, §6. The Coxeter Plane; see p. 416, Table 1. Summary of the factorisations of the Coxeter versors of the 4D root systems; "Coxeter (reflection) groups in the Clifford framework ... afford a uniquely simple prescription for reflections. Via the Cartan-Dieudonné theorem, performing two reflections successively generates a rotation, which in Clifford algebra is described by a spinor that is simply the geometric product of the two vectors generating the reflections." Dechant, Pierre-Philippe (2017). "The E8 Geometry from a Clifford Perspective". Advances in Applied Clifford Algebras. 27: 397–421. arXiv:1603.04805. doi:10.1007/s00006-016-0675-9. S2CID253595386.
Dorst 2019, p. 44, §1. Villarceau Circles; "In mathematics, the path that the (1, 1) knot on the torus traces is also known as a Villarceau circle. Villarceau circles are usually introduced as two intersecting circles that are the cross-section of a torus by a well-chosen plane cutting it. Picking one such circle and rotating it around the torus axis, the resulting family of circles can be used to rule the torus. By nesting tori smartly, the collection of all such circles then form a Hopf fibration.... we prefer to consider the Villarceau circle as the (1, 1) torus knot rather than as a planar cut." Dorst, Leo (2019). "Conformal Villarceau Rotors". Advances in Applied Clifford Algebras. 29 (44). doi:10.1007/s00006-019-0960-5. S2CID253592159.
Dechant 2021, Abstract; "[E]very 3D root system allows the construction of a corresponding 4D root system via an 'induction theorem'. In this paper, we look at the icosahedral case of H3 → H4 in detail and perform the calculations explicitly. Clifford algebra is used to perform group theoretic calculations based on the versor theorem and the Cartan-Dieudonné theorem ... shed[ding] light on geometric aspects of the H4 root system (the 600-cell) as well as other related polytopes and their symmetries ... including the construction of the Coxeter plane, which is used for visualising the complementary pairs of invariant polytopes.... This approach therefore constitutes a more systematic and general way of performing calculations concerning groups, in particular reflection groups and root systems, in a Clifford algebraic framework." Dechant, Pierre-Philippe (2021). "Clifford Spinors and Root System Induction: H4 and the Grand Antiprism". Advances in Applied Clifford Algebras. 31 (3). Springer Science and Business Media. arXiv:2103.07817. doi:10.1007/s00006-021-01139-2. S2CID232232920.