The maximum depth of recursion refers to the number of levels of activation of a procedure which exist during the deepest call of the procedure. Cornelius & Kirby (1975) Cornelius, B.J.; Kirby, G.H. (1975). "Depth of recursion and the ackermann function". BIT Numerical Mathematics. 15 (2): 144–150. doi:10.1007/BF01932687. S2CID120532578.
Sundblad 1971. Sundblad, Yngve (March 1971). "The Ackermann function. A theoretical, computational, and formula manipulative study". BIT Numerical Mathematics. 11 (1): 107–119. doi:10.1007/BF01935330. S2CID123416408.
Pettie 2002. Pettie, S. (2002). "An inverse-Ackermann style lower bound for the online minimum spanning tree verification problem". The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings. pp. 155–163. doi:10.1109/SFCS.2002.1181892. ISBN0-7695-1822-2. S2CID8636108.
Vaida 1970. Vaida, Dragoș (1970). "Compiler Validation for an Algol-like Language". Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie. Nouvelle série. 14 (62) (4): 487–502. JSTOR43679758.
The maximum depth of recursion refers to the number of levels of activation of a procedure which exist during the deepest call of the procedure. Cornelius & Kirby (1975) Cornelius, B.J.; Kirby, G.H. (1975). "Depth of recursion and the ackermann function". BIT Numerical Mathematics. 15 (2): 144–150. doi:10.1007/BF01932687. S2CID120532578.
Sundblad 1971. Sundblad, Yngve (March 1971). "The Ackermann function. A theoretical, computational, and formula manipulative study". BIT Numerical Mathematics. 11 (1): 107–119. doi:10.1007/BF01935330. S2CID123416408.
Pettie 2002. Pettie, S. (2002). "An inverse-Ackermann style lower bound for the online minimum spanning tree verification problem". The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings. pp. 155–163. doi:10.1109/SFCS.2002.1181892. ISBN0-7695-1822-2. S2CID8636108.