Department of the Army (1961), Section 5.1. Department of the Army (1961). Army Technical Manual TM 11-684: Principles and Applications of Mathematics for Communications-Electronics.
Baez & Dolan (2001), p. 37 explains the historical development, in "stark contrast" with the set theory presentation: "Apparently, half an apple is easier to understand than a negative apple!" Baez, J.; Dolan, J. (2001). Mathematics Unlimited – 2001 and Beyond. From Finite Sets to Feynman Diagrams. p. 29. arXiv:math.QA/0004133. ISBN3-540-66913-2.
Enderton (1977), p. 138: "...select two sets K and L with card K = 2 and card L = 3. Sets of fingers are handy; sets of apples are preferred by textbooks." Enderton, Herbert (1977). Elements of Set Theory. Academic Press. ISBN978-0-12-238440-0.
The intuitive approach, inverting every element of a cut and taking its complement, works only for irrational numbers; see Enderton (1977), p. 117 for details. Enderton, Herbert (1977). Elements of Set Theory. Academic Press. ISBN978-0-12-238440-0.
Nicholson (2012), p. 70; Bhattacharya, Jain & Nagpaul (1994), p. 159. Nicholson, W. Keith (2012). Introduction to Abstract Algebra. Wiley. Bhattacharya, P. B.; Jain, S. K.; Nagpaul, S. R. (1994). Basic Abstract Algebra (2nd ed.). Cambridge University Press.
Bhattacharya, Jain & Nagpaul (1994), p. 196. Bhattacharya, P. B.; Jain, S. K.; Nagpaul, S. R. (1994). Basic Abstract Algebra (2nd ed.). Cambridge University Press.
Isoda, Olfos & Noine (2021), p. 163–164. Isoda, Masami; Olfos, Raimundo; Noine, Takeshi (2021). "The Teaching of Multidigit Multiplication in the Japanese Approach". Teaching Multiplication with Lesson Study: Japanese and Ibero-American Theories for International Mathematics Education. doi:10.1007/978-3-030-28561-6. ISBN978-3-030-28561-6.
Crossley & Henry (1990). Crossley, J. N.; Henry, A. S. (1990). "Thus spake al-Khwārizmī: A translation of the text of Cambridge University Library Ms. Ii.vi.5". Historia Mathematica. 17 (2): 103–131. doi:10.1016/0315-0860(90)90048-i.
Cassidy, David; Holton, Gerald; Rutherford, James (2002). "Reviewing Units, Mathematics, and Scientific Notation". Understanding Physics. New York: Springer. p. 11. doi:10.1007/0-387-21660-X_3. ISBN978-0-387-98755-2.
Kistermann, F. W. (1998). "Blaise Pascal's adding machine: new findings and conclusions". IEEE Annals of the History of Computing. 20 (1): 69–76. doi:10.1109/85.646211.
Campanile, Benedetta (2024). "La girandola di Poleni: un progetto destinato a scomparire". In Di Mauro, Marco; Romano, Luigi; Zanini, Valeria (eds.). Atti del XLIII Convegno annuale SISFA (in Italian). pp. 151–158. doi:10.6093/978-88-6887-278-6.
Isoda, Olfos & Noine (2021), p. 163–164. Isoda, Masami; Olfos, Raimundo; Noine, Takeshi (2021). "The Teaching of Multidigit Multiplication in the Japanese Approach". Teaching Multiplication with Lesson Study: Japanese and Ibero-American Theories for International Mathematics Education. doi:10.1007/978-3-030-28561-6. ISBN978-3-030-28561-6.
Textbook constructions are usually not so cavalier with the "lim" symbol; see Burrill (1967), p. 138 for a more careful, drawn-out development of addition with Cauchy sequences. Burrill, Claude (1967). Foundations of Real Numbers. McGraw-Hill. LCCQA248.B95.