Aizerman's conjecture (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Aizerman's conjecture" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
5th place
5th place
274th place
309th place
4,117th place
low place
18th place
17th place
low place
9,148th place

doi.org (Global: 2nd place; English: 2nd place)

  • "The Aizerman conjecture: The Popov method". Mathematical Problems of Control Theory. Series on Stability, Vibration and Control of Systems, Series A. Vol. 6. World Scientific. 2001. pp. 155–166. doi:10.1142/9789812799852_0006. ISBN 978-981-02-4694-5.
  • Liberzon, M. R. (2006). "Essays on the absolute stability theory". Automation and Remote Control. 67 (10): 1610–1644. doi:10.1134/S0005117906100043. ISSN 0005-1179. S2CID 120434924.
  • Leonov G.A.; Kuznetsov N.V. (2011). "Algorithms for Searching for Hidden Oscillations in the Aizerman and Kalman Problems" (PDF). Doklady Mathematics. 84 (1): 475–481. doi:10.1134/S1064562411040120. S2CID 120692391.
  • Bragin V.O.; Vagaitsev V.I.; Kuznetsov N.V.; Leonov G.A. (2011). "Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua's Circuits" (PDF). Journal of Computer and Systems Sciences International. 50 (5): 511–543. doi:10.1134/S106423071104006X. S2CID 21657305.
  • Kuznetsov N.V. (2020). "Theory of hidden oscillations and stability of control systems" (PDF). Journal of Computer and Systems Sciences International. 59 (5): 647–668. doi:10.1134/S1064230720050093. S2CID 225304463.
  • Leonov G.A.; Kuznetsov N.V. (2013). "Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits". International Journal of Bifurcation and Chaos. 23 (1): 1330002–219. Bibcode:2013IJBC...2330002L. doi:10.1142/S0218127413300024.
  • Drummond, Ross; Guiver, Chris; Turner, Matthew C. (2023). "Aizerman Conjectures for a Class of Multivariate Positive Systems". IEEE Transactions on Automatic Control. 68 (8): 5073–5080. Bibcode:2023ITAC...68.5073D. doi:10.1109/TAC.2022.3217740. ISSN 0018-9286. S2CID 260255282.
  • Hinrichsen, D.; Pritchard, A. J. (1992-01-01). "Destabilization by output feedback". Differential and Integral Equations. 5 (2). doi:10.57262/die/1371043976. ISSN 0893-4983. S2CID 118359120.
  • Jayawardhana, Bayu; Logemann, Hartmut; Ryan, Eugene (2011). "The Circle Criterion and Input-to-State Stability". IEEE Control Systems Magazine. 31 (4): 32–67. doi:10.1109/MCS.2011.941143. ISSN 1066-033X. S2CID 84839719.

harvard.edu (Global: 18th place; English: 17th place)

ui.adsabs.harvard.edu

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

spbu.ru (Global: 4,117th place; English: low place)

math.spbu.ru

springer.com (Global: 274th place; English: 309th place)

link.springer.com

worldcat.org (Global: 5th place; English: 5th place)

search.worldcat.org

worldscientific.com (Global: low place; English: 9,148th place)

  • "The Aizerman conjecture: The Popov method". Mathematical Problems of Control Theory. Series on Stability, Vibration and Control of Systems, Series A. Vol. 6. World Scientific. 2001. pp. 155–166. doi:10.1142/9789812799852_0006. ISBN 978-981-02-4694-5.