Evans, Claire; Pollock, Sara; Rebholz, Leo G.; Xiao, Mengying (20 February 2020). "A Proof That Anderson Acceleration Improves the Convergence Rate in Linearly Converging Fixed-Point Methods (But Not in Those Converging Quadratically)". SIAM Journal on Numerical Analysis. 58 (1): 788–810. arXiv:1810.08455. doi:10.1137/19M1245384.
Walker, Homer F.; Ni, Peng (January 2011). "Anderson Acceleration for Fixed-Point Iterations". SIAM Journal on Numerical Analysis. 49 (4): 1715–1735. CiteSeerX10.1.1.722.2636. doi:10.1137/10078356X.
Fang, Haw-ren; Saad, Yousef (March 2009). "Two classes of multisecant methods for nonlinear acceleration". Numerical Linear Algebra with Applications. 16 (3): 197–221. doi:10.1002/nla.617.
Evans, Claire; Pollock, Sara; Rebholz, Leo G.; Xiao, Mengying (20 February 2020). "A Proof That Anderson Acceleration Improves the Convergence Rate in Linearly Converging Fixed-Point Methods (But Not in Those Converging Quadratically)". SIAM Journal on Numerical Analysis. 58 (1): 788–810. arXiv:1810.08455. doi:10.1137/19M1245384.
Eyert, V. (March 1996). "A Comparative Study on Methods for Convergence Acceleration of Iterative Vector Sequences". Journal of Computational Physics. 124 (2): 271–285. doi:10.1006/jcph.1996.0059.
Oosterlee, C. W.; Washio, T. (January 2000). "Krylov Subspace Acceleration of Nonlinear Multigrid with Application to Recirculating Flows". SIAM Journal on Scientific Computing. 21 (5): 1670–1690. doi:10.1137/S1064827598338093.
Pulay, Péter (July 1980). "Convergence acceleration of iterative sequences. the case of scf iteration". Chemical Physics Letters. 73 (2): 393–398. doi:10.1016/0009-2614(80)80396-4.
Pulay, P. (1982). "ImprovedSCF convergence acceleration". Journal of Computational Chemistry. 3 (4): 556–560. doi:10.1002/jcc.540030413.
Carlson, Neil N.; Miller, Keith (May 1998). "Design and Application of a Gradient-Weighted Moving Finite Element Code I: in One Dimension". SIAM Journal on Scientific Computing. 19 (3): 728–765. doi:10.1137/S106482759426955X.
Miller, Keith (November 2005). "Nonlinear Krylov and moving nodes in the method of lines". Journal of Computational and Applied Mathematics. 183 (2): 275–287. doi:10.1016/j.cam.2004.12.032.