Analysis of information sources in references of the Wikipedia article "Androgen backdoor pathway" in English language version.
In 2004, a "backdoor" pathway was described with a metabolic route from 17OHP to DHT that does not involve A4 or T. In CAH, accumulating 17OHP is 5α- and 3α- reduced before being converted to androsterone by CYP17A1 with subsequent reduction and oxidation steps yielding DHT (44). Urinary steroid profiles in babies with CAH revealed that this pathway is active in CAH in the newborn period (45). The backdoor pathway may also make further contributions to the total androgen pool in CAH in the newborn period. In vitro studies have demonstrated that 11-hydroxylated corticosteroids such as 21DF, 21-deoxycortisone (21DE) and 11β-hydroxyprogesterone (11βOHP) can be converted by backdoor pathway enzymes to yield 11-ketodihydrotestosterone (11KDHT) (46), an androgen with a similar potency to DHT ( Figure 1 ). Almost 60 years ago, Jailer and colleagues demonstrated that 21DF and not 17OHP dosing resulted in increased 11-hydroxyandrosterone (11OHAST) excretion, an indication that 21DF is an androgen precursor (47). Whether the route is via the backdoor pathway or by the direct conversion of 21DF to 11OHA4 via CYP17A1, 21DF may be an important contributor to the androgen pool in CAH.
21-carbon steroids can be converted to 19-carbon steroids by a third pathway. The unique feature of the pathway is the 5a-reduction of the 21-carbon precursors, which leads to 19-carbon products that are 5a-reduced. We call this the backdoor pathway to DHT because AD and T are not intermediates to DHT
The downstream metabolism of 21dF and 21dE by the enzymes in the backdoor pathway, SRD5A and AKR1C2, was investigated and the resulting novel C11‐oxy C21 steroids, 5α‐pregnan-3α,11β,17-triol-20-one (11OHPdiol) and 5α-pregnan-3α,17-diol-11,20-dione (11KPdiol), were shown to be suitable substrates for the lyase activity of CYP17A1, resulting in the production of C11-oxy C19 steroid metabolites 11β‐hydroxyandrosterone (11OHAST) and 11‐ketoandrosterone (11KAST) [...] The interconversion of 21dF and 21dE by 11βHSD yielded two C11-oxy C21 steroids which our in vitro assays showed are metabolised by steroidogenic enzymes in the backdoor pathway to yield C11-oxy C19 androgens. [...] the backdoor pathway may include the 5α-reduction of 21dF and 21dE in these patients and, as a consequence, the production of potent androgens, 11OHDHT and 11KDHT.
[...] steroidogenic research has focused on the metabolism of the C11-oxy C21 steroids in backdoor pathway yielding potent androgens (Fig. 1). Increased activation of the pathway and elevated enzyme expression levels are more frequently reported in the human fetus and ovaries and in clinical conditions which include 21OHD and adrenocortical tumours. [...] The detection of C11-oxy steroids in clinical conditions associated with increased backdoor pathway activity led us to investigate the catalytic activity of CYP17A1 towards the C11-oxy C21 steroids potentially contributing to the androgen pool.
In 2004, a "backdoor" pathway was described with a metabolic route from 17OHP to DHT that does not involve A4 or T. In CAH, accumulating 17OHP is 5α- and 3α- reduced before being converted to androsterone by CYP17A1 with subsequent reduction and oxidation steps yielding DHT (44). Urinary steroid profiles in babies with CAH revealed that this pathway is active in CAH in the newborn period (45). The backdoor pathway may also make further contributions to the total androgen pool in CAH in the newborn period. In vitro studies have demonstrated that 11-hydroxylated corticosteroids such as 21DF, 21-deoxycortisone (21DE) and 11β-hydroxyprogesterone (11βOHP) can be converted by backdoor pathway enzymes to yield 11-ketodihydrotestosterone (11KDHT) (46), an androgen with a similar potency to DHT ( Figure 1 ). Almost 60 years ago, Jailer and colleagues demonstrated that 21DF and not 17OHP dosing resulted in increased 11-hydroxyandrosterone (11OHAST) excretion, an indication that 21DF is an androgen precursor (47). Whether the route is via the backdoor pathway or by the direct conversion of 21DF to 11OHA4 via CYP17A1, 21DF may be an important contributor to the androgen pool in CAH.
21-carbon steroids can be converted to 19-carbon steroids by a third pathway. The unique feature of the pathway is the 5a-reduction of the 21-carbon precursors, which leads to 19-carbon products that are 5a-reduced. We call this the backdoor pathway to DHT because AD and T are not intermediates to DHT
The downstream metabolism of 21dF and 21dE by the enzymes in the backdoor pathway, SRD5A and AKR1C2, was investigated and the resulting novel C11‐oxy C21 steroids, 5α‐pregnan-3α,11β,17-triol-20-one (11OHPdiol) and 5α-pregnan-3α,17-diol-11,20-dione (11KPdiol), were shown to be suitable substrates for the lyase activity of CYP17A1, resulting in the production of C11-oxy C19 steroid metabolites 11β‐hydroxyandrosterone (11OHAST) and 11‐ketoandrosterone (11KAST) [...] The interconversion of 21dF and 21dE by 11βHSD yielded two C11-oxy C21 steroids which our in vitro assays showed are metabolised by steroidogenic enzymes in the backdoor pathway to yield C11-oxy C19 androgens. [...] the backdoor pathway may include the 5α-reduction of 21dF and 21dE in these patients and, as a consequence, the production of potent androgens, 11OHDHT and 11KDHT.
[...] steroidogenic research has focused on the metabolism of the C11-oxy C21 steroids in backdoor pathway yielding potent androgens (Fig. 1). Increased activation of the pathway and elevated enzyme expression levels are more frequently reported in the human fetus and ovaries and in clinical conditions which include 21OHD and adrenocortical tumours. [...] The detection of C11-oxy steroids in clinical conditions associated with increased backdoor pathway activity led us to investigate the catalytic activity of CYP17A1 towards the C11-oxy C21 steroids potentially contributing to the androgen pool.
In 2004, a "backdoor" pathway was described with a metabolic route from 17OHP to DHT that does not involve A4 or T. In CAH, accumulating 17OHP is 5α- and 3α- reduced before being converted to androsterone by CYP17A1 with subsequent reduction and oxidation steps yielding DHT (44). Urinary steroid profiles in babies with CAH revealed that this pathway is active in CAH in the newborn period (45). The backdoor pathway may also make further contributions to the total androgen pool in CAH in the newborn period. In vitro studies have demonstrated that 11-hydroxylated corticosteroids such as 21DF, 21-deoxycortisone (21DE) and 11β-hydroxyprogesterone (11βOHP) can be converted by backdoor pathway enzymes to yield 11-ketodihydrotestosterone (11KDHT) (46), an androgen with a similar potency to DHT ( Figure 1 ). Almost 60 years ago, Jailer and colleagues demonstrated that 21DF and not 17OHP dosing resulted in increased 11-hydroxyandrosterone (11OHAST) excretion, an indication that 21DF is an androgen precursor (47). Whether the route is via the backdoor pathway or by the direct conversion of 21DF to 11OHA4 via CYP17A1, 21DF may be an important contributor to the androgen pool in CAH.
21-carbon steroids can be converted to 19-carbon steroids by a third pathway. The unique feature of the pathway is the 5a-reduction of the 21-carbon precursors, which leads to 19-carbon products that are 5a-reduced. We call this the backdoor pathway to DHT because AD and T are not intermediates to DHT
The downstream metabolism of 21dF and 21dE by the enzymes in the backdoor pathway, SRD5A and AKR1C2, was investigated and the resulting novel C11‐oxy C21 steroids, 5α‐pregnan-3α,11β,17-triol-20-one (11OHPdiol) and 5α-pregnan-3α,17-diol-11,20-dione (11KPdiol), were shown to be suitable substrates for the lyase activity of CYP17A1, resulting in the production of C11-oxy C19 steroid metabolites 11β‐hydroxyandrosterone (11OHAST) and 11‐ketoandrosterone (11KAST) [...] The interconversion of 21dF and 21dE by 11βHSD yielded two C11-oxy C21 steroids which our in vitro assays showed are metabolised by steroidogenic enzymes in the backdoor pathway to yield C11-oxy C19 androgens. [...] the backdoor pathway may include the 5α-reduction of 21dF and 21dE in these patients and, as a consequence, the production of potent androgens, 11OHDHT and 11KDHT.
[...] steroidogenic research has focused on the metabolism of the C11-oxy C21 steroids in backdoor pathway yielding potent androgens (Fig. 1). Increased activation of the pathway and elevated enzyme expression levels are more frequently reported in the human fetus and ovaries and in clinical conditions which include 21OHD and adrenocortical tumours. [...] The detection of C11-oxy steroids in clinical conditions associated with increased backdoor pathway activity led us to investigate the catalytic activity of CYP17A1 towards the C11-oxy C21 steroids potentially contributing to the androgen pool.