Analysis of information sources in references of the Wikipedia article "Apep (star system)" in English language version.
Writing in the journal Nature Astronomy [...] the most violent star is creating stellar winds at two speeds — fast at the poles, slow at the equator [...] the beautiful pinwheel of blazing dust is created not by the fast polar winds, but by the turbulence that arises when the second star in the central engine passes through that first star's slow-moving equatorial wind.
"It was not expected such a system would be found in our galaxy—only in younger galaxies much further away," [...] The discovery of the system [...] also included scientists from the Netherlands Institute for Radio Astronomy, the University of Sydney, the University of Edinburgh, the University of Sheffield, and the University of New South Wales. [...] is adorned with a dust "pinwheel"— whose strangely slow motion suggests current theories on star deaths may be incomplete.
Field of view: 0.26 x 0.26 arcminutes
...but to the researchers who recently investigated this enigmatic object, it's simply "Apep" [...] The speed of gas within the nebula was clocked at 12 million kilometers per hour [...] featuring a massive triple star system at its core—a binary pair and a lone star...
Three stars are in this picture, although the two Wolf-Rayet stars look like a single one in the center [...] the winds are moving at 12 million kilometers (7.5 million miles) per hour. [...] The observations were possible thanks to the Very Large Telescope [...] the dust at the edge of the system is moving at the slower pace of 2 million kilometers (1.2 million miles) per hour.
The swirling cloud of dust is a mere 8,000 light years from Earth is a vast system made up of two shockingly bright stars. [...] The two bright stars orbit each other every hundred years or so, according to the researchers.
2XMM is a catalogue of serendipitous X-ray sources from the European Space Agency's (ESA) XMM-Newton observatory
For the first time, astronomers have found a star system in our galaxy that could produce a gamma-ray burst [...] the researchers nicknamed it "Apep" after the Egyptian snake-deity of chaos. [...] The name works nicely for the system, which is surrounded by long, fiery pinwheels of matter cast out into space...
"It was not expected such a system would be found in our galaxy—only in younger galaxies much further away," [...] The discovery of the system [...] also included scientists from the Netherlands Institute for Radio Astronomy, the University of Sydney, the University of Edinburgh, the University of Sheffield, and the University of New South Wales. [...] is adorned with a dust "pinwheel"— whose strangely slow motion suggests current theories on star deaths may be incomplete.
One of stars is an unusually massive sun known as a Wolf-Rayet star. When such stars run out of fuel, they collapse, causing a supernova explosion. Theorists believe that if the Wolf-Rayet star is also spinning fast, the explosion will produce intense jets of gamma rays out of either pole...
In a part of the Milky Way 8000-odd light-years away [...] The system was spotted by PhD student Dr Joe Callingham while he was sorting through data, and later confirmed using the Anglo-Australian Telescope at Coonabarabran in regional NSW.
...the astronomers have measured the velocity of the stellar winds as fast as 12 million kilometres an hour, about 1 percent the speed of light. [...] We discovered this star as an outlier in a survey with a radio telescope operated by the University of Sydney.
These results are further described in our letter in Nature "A dusty pinwheel nebula around the massive star wr 104" by Peter Tuthill, John Monnier and William Danchi Volume 398, pp. 487–489, April 8, 1999.
Field of view: 0.26 x 0.26 arcminutes
...but to the researchers who recently investigated this enigmatic object, it's simply "Apep" [...] The speed of gas within the nebula was clocked at 12 million kilometers per hour [...] featuring a massive triple star system at its core—a binary pair and a lone star...
For the first time, astronomers have found a star system in our galaxy that could produce a gamma-ray burst [...] the researchers nicknamed it "Apep" after the Egyptian snake-deity of chaos. [...] The name works nicely for the system, which is surrounded by long, fiery pinwheels of matter cast out into space...
2XMM is a catalogue of serendipitous X-ray sources from the European Space Agency's (ESA) XMM-Newton observatory
Three stars are in this picture, although the two Wolf-Rayet stars look like a single one in the center [...] the winds are moving at 12 million kilometers (7.5 million miles) per hour. [...] The observations were possible thanks to the Very Large Telescope [...] the dust at the edge of the system is moving at the slower pace of 2 million kilometers (1.2 million miles) per hour.
The swirling cloud of dust is a mere 8,000 light years from Earth is a vast system made up of two shockingly bright stars. [...] The two bright stars orbit each other every hundred years or so, according to the researchers.
...the astronomers have measured the velocity of the stellar winds as fast as 12 million kilometres an hour, about 1 percent the speed of light. [...] We discovered this star as an outlier in a survey with a radio telescope operated by the University of Sydney.
Writing in the journal Nature Astronomy [...] the most violent star is creating stellar winds at two speeds — fast at the poles, slow at the equator [...] the beautiful pinwheel of blazing dust is created not by the fast polar winds, but by the turbulence that arises when the second star in the central engine passes through that first star's slow-moving equatorial wind.
One of stars is an unusually massive sun known as a Wolf-Rayet star. When such stars run out of fuel, they collapse, causing a supernova explosion. Theorists believe that if the Wolf-Rayet star is also spinning fast, the explosion will produce intense jets of gamma rays out of either pole...
In a part of the Milky Way 8000-odd light-years away [...] The system was spotted by PhD student Dr Joe Callingham while he was sorting through data, and later confirmed using the Anglo-Australian Telescope at Coonabarabran in regional NSW.
These results are further described in our letter in Nature "A dusty pinwheel nebula around the massive star wr 104" by Peter Tuthill, John Monnier and William Danchi Volume 398, pp. 487–489, April 8, 1999.