Astronomia nova (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Astronomia nova" in English language version.

refsWebsite
Global rank English rank
6th place
6th place
3rd place
3rd place
low place
low place
5th place
5th place
27th place
51st place
1st place
1st place
75th place
83rd place

archive.org

  • Koestler, Arthur (1990) [1959]. The Sleepwalkers: A History of Man's Changing Vision of the Universe. London: Penguin Books. p. 1. ISBN 0-14-019246-8.
  • Koestler, Arthur (1990). The Sleepwalkers: A history of man's changing vision of the universe. London: Penguin Books. p. 325. ISBN 0-14-019246-8.
  • Gillispie, Charles Coulston (1960). The Edge of Objectivity: An Essay in the History of Scientific Ideas. Princeton University Press. pp. 33–37. ISBN 0-691-02350-6.
  • Koestler, Arthur (1990). The Sleepwalkers: A history of man's changing vision of the universe. London: Penguin Books. p. 338. ISBN 0-14-019246-8.
  • In his Astronomia nova, Kepler presented only a proof that Mars' orbit is elliptical. Evidence that the other known planets' orbits are elliptical was presented later. See: Johannes Kepler, Astronomia nova … (1609), p. 285. After having rejected circular and oval orbits, Kepler concluded that Mars' orbit must be elliptical. From the top of page 285: "Ergo ellipsis est Planetæ iter; … " (Thus, an ellipse is the planet's [i.e., Mars'] path; … ) Later on the same page: " … ut sequenti capite patescet: ubi simul etiam demonstrabitur, nullam Planetæ relinqui figuram Orbitæ, præterquam perfecte ellipticam; … " ( … as will be revealed in the next chapter: where it will also then be proved that any figure of the planet's orbit must be relinquished, except a perfect ellipse; … ) And then: "Caput LIX. Demonstratio, quod orbita Martis, … , fiat perfecta ellipsis: … " (Chapter 59. Proof that Mars' orbit, … , be a perfect ellipse: … ) The geometric proof that Mars' orbit is an ellipse appears as Protheorema XI on pages 289-290.
    Kepler stated that all planets travel in elliptical orbits having the Sun at one focus in: Johannes Kepler, Epitome Astronomiae Copernicanae [Summary of Copernican Astronomy] (Linz ("Lentiis ad Danubium"), (Austria): Johann Planck, 1622), book 5, part 1, III. De Figura Orbitæ (III. On the figure [i.e., shape] of orbits), pages 658-665. From p. 658: "Ellipsin fieri orbitam planetæ … " (Of an ellipse is made a planet's orbit … ). From p. 659: " … Sole (Foco altero huius ellipsis) … " ( … the Sun (the other focus of this ellipse) … ).
  • In his Astronomia nova, Kepler presented only a proof that Mars' orbit is elliptical. Evidence that the other known planets' orbits are elliptical was presented later. See: Johannes Kepler, Astronomia nova … (1609), p. 285. After having rejected circular and oval orbits, Kepler concluded that Mars' orbit must be elliptical. From the top of page 285: "Ergo ellipsis est Planetæ iter; … " (Thus, an ellipse is the planet's [i.e., Mars'] path; … ) Later on the same page: " … ut sequenti capite patescet: ubi simul etiam demonstrabitur, nullam Planetæ relinqui figuram Orbitæ, præterquam perfecte ellipticam; … " ( … as will be revealed in the next chapter: where it will also then be proved that any figure of the planet's orbit must be relinquished, except a perfect ellipse; … ) And then: "Caput LIX. Demonstratio, quod orbita Martis, … , fiat perfecta ellipsis: … " (Chapter 59. Proof that Mars' orbit, … , be a perfect ellipse: … ) The geometric proof that Mars' orbit is an ellipse appears as Protheorema XI on pages 289-290.
    Kepler stated that all planets travel in elliptical orbits having the Sun at one focus in: Johannes Kepler, Epitome Astronomiae Copernicanae [Summary of Copernican Astronomy] (Linz ("Lentiis ad Danubium"), (Austria): Johann Planck, 1622), book 5, part 1, III. De Figura Orbitæ (III. On the figure [i.e., shape] of orbits), pages 658-665. From p. 658: "Ellipsin fieri orbitam planetæ … " (Of an ellipse is made a planet's orbit … ). From p. 659: " … Sole (Foco altero huius ellipsis) … " ( … the Sun (the other focus of this ellipse) … ).
  • Johannes Kepler, Harmonices Mundi [The Harmony of the World] (Linz, (Austria): Johann Planck, 1619), p. 189. From the bottom of p. 189: "Sed res est certissima exactissimaque quod proportio qua est inter binorum quorumcunque Planetarum tempora periodica, sit præcise sesquialtera proportionis mediarum distantiarum, … " (But it is absolutely certain and exact that the proportion between the periodic times of any two planets is precisely the sesquialternate proportion [i.e., the ratio of 3:2] of their mean distances, … ")
    An English translation of Kepler's Harmonices Mundi is available as: Johannes Kepler with E. J. Aiton, A. M. Duncan, and J. V. Field, trans., The Harmony of the World (Philadelphia, Pennsylvania: American Philosophical Society, 1997); see especially p. 411.
  • Johannes Kepler, Astronomia nova … (1609), p. 5 of the Introductio in hoc opus (Introduction to this work). From page 5: "Orbis virtutis tractoriæ, quæ est in Luna, porrigitur utque ad Terras, & prolectat aquas sub Zonam Torridam, … Celeriter vero Luna verticem transvolante, cum aquæ tam celeriter sequi non possint, fluxus quidem fit Oceani sub Torrida in Occidentem, … " (The sphere of the lifting power, which is [centered] in the moon, is extended as far as to the earth and attracts the waters under the torrid zone, … However the moon flies swiftly across the zenith; because the waters cannot follow so quickly, the tide of the ocean under the torrid [zone] is indeed made to the west, … )
  • Gillispie, Charles Coulston (1960). The Edge of Objectivity: An Essay in the History of Scientific Ideas. Princeton University Press. p. 51. ISBN 0-691-02350-6.

books.google.com

  • Dreyer, John Louis Emil (1906). History of the Planetary Systems from Thales to Kepler. Cambridge: University Press. pp. 401–2.
  • In his Astronomia nova, Kepler presented only a proof that Mars' orbit is elliptical. Evidence that the other known planets' orbits are elliptical was presented later. See: Johannes Kepler, Astronomia nova … (1609), p. 285. After having rejected circular and oval orbits, Kepler concluded that Mars' orbit must be elliptical. From the top of page 285: "Ergo ellipsis est Planetæ iter; … " (Thus, an ellipse is the planet's [i.e., Mars'] path; … ) Later on the same page: " … ut sequenti capite patescet: ubi simul etiam demonstrabitur, nullam Planetæ relinqui figuram Orbitæ, præterquam perfecte ellipticam; … " ( … as will be revealed in the next chapter: where it will also then be proved that any figure of the planet's orbit must be relinquished, except a perfect ellipse; … ) And then: "Caput LIX. Demonstratio, quod orbita Martis, … , fiat perfecta ellipsis: … " (Chapter 59. Proof that Mars' orbit, … , be a perfect ellipse: … ) The geometric proof that Mars' orbit is an ellipse appears as Protheorema XI on pages 289-290.
    Kepler stated that all planets travel in elliptical orbits having the Sun at one focus in: Johannes Kepler, Epitome Astronomiae Copernicanae [Summary of Copernican Astronomy] (Linz ("Lentiis ad Danubium"), (Austria): Johann Planck, 1622), book 5, part 1, III. De Figura Orbitæ (III. On the figure [i.e., shape] of orbits), pages 658-665. From p. 658: "Ellipsin fieri orbitam planetæ … " (Of an ellipse is made a planet's orbit … ). From p. 659: " … Sole (Foco altero huius ellipsis) … " ( … the Sun (the other focus of this ellipse) … ).
  • In his Astronomia nova, Kepler presented only a proof that Mars' orbit is elliptical. Evidence that the other known planets' orbits are elliptical was presented later. See: Johannes Kepler, Astronomia nova … (1609), p. 285. After having rejected circular and oval orbits, Kepler concluded that Mars' orbit must be elliptical. From the top of page 285: "Ergo ellipsis est Planetæ iter; … " (Thus, an ellipse is the planet's [i.e., Mars'] path; … ) Later on the same page: " … ut sequenti capite patescet: ubi simul etiam demonstrabitur, nullam Planetæ relinqui figuram Orbitæ, præterquam perfecte ellipticam; … " ( … as will be revealed in the next chapter: where it will also then be proved that any figure of the planet's orbit must be relinquished, except a perfect ellipse; … ) And then: "Caput LIX. Demonstratio, quod orbita Martis, … , fiat perfecta ellipsis: … " (Chapter 59. Proof that Mars' orbit, … , be a perfect ellipse: … ) The geometric proof that Mars' orbit is an ellipse appears as Protheorema XI on pages 289-290.
    Kepler stated that all planets travel in elliptical orbits having the Sun at one focus in: Johannes Kepler, Epitome Astronomiae Copernicanae [Summary of Copernican Astronomy] (Linz ("Lentiis ad Danubium"), (Austria): Johann Planck, 1622), book 5, part 1, III. De Figura Orbitæ (III. On the figure [i.e., shape] of orbits), pages 658-665. From p. 658: "Ellipsin fieri orbitam planetæ … " (Of an ellipse is made a planet's orbit … ). From p. 659: " … Sole (Foco altero huius ellipsis) … " ( … the Sun (the other focus of this ellipse) … ).
  • Johannes Kepler, Harmonices Mundi [The Harmony of the World] (Linz, (Austria): Johann Planck, 1619), p. 189. From the bottom of p. 189: "Sed res est certissima exactissimaque quod proportio qua est inter binorum quorumcunque Planetarum tempora periodica, sit præcise sesquialtera proportionis mediarum distantiarum, … " (But it is absolutely certain and exact that the proportion between the periodic times of any two planets is precisely the sesquialternate proportion [i.e., the ratio of 3:2] of their mean distances, … ")
    An English translation of Kepler's Harmonices Mundi is available as: Johannes Kepler with E. J. Aiton, A. M. Duncan, and J. V. Field, trans., The Harmony of the World (Philadelphia, Pennsylvania: American Philosophical Society, 1997); see especially p. 411.

nasa.gov

kepler.nasa.gov

uni-mannheim.de

  • Here G.V. is a siglum for "Generositas Vestra", see Winiarczyk, Marek (1995). Sigla Latina in libris impressis occurrentia: cum siglorum graecorum appendice (2nd ed.). OCLC 168613439.

web.archive.org

wikisource.org

en.wikisource.org

worldcat.org

search.worldcat.org

  • Here G.V. is a siglum for "Generositas Vestra", see Winiarczyk, Marek (1995). Sigla Latina in libris impressis occurrentia: cum siglorum graecorum appendice (2nd ed.). OCLC 168613439.