Analysis of information sources in references of the Wikipedia article "Bernoulli's principle" in English language version.
Finally, let's go back to the initial example of a ball levitating in a jet of air. The naive explanation for the stability of the ball in the air stream, 'because pressure in the jet is lower than pressure in the surrounding atmosphere,' is clearly incorrect. The static pressure in the free air jet is the same as the pressure in the surrounding atmosphere...
The airfoil of the airplane wing, according to the textbook explanation that is more or less standard in the United States, has a special shape with more curvature on top than on the bottom; consequently, the air must travel over the top surface farther than over the bottom surface. Because the air must make the trip over the top and bottom surfaces in the same elapsed time ..., the velocity over the top surface will be greater than over the bottom. According to Bernoulli's theorem, this velocity difference produces a pressure difference which is lift.[permanent dead link ]
This occurs because of Bernoulli's principle — fast-moving air has lower pressure than non-moving air.
Finally, let's go back to the initial example of a ball levitating in a jet of air. The naive explanation for the stability of the ball in the air stream, 'because pressure in the jet is lower than pressure in the surrounding atmosphere,' is clearly incorrect. The static pressure in the free air jet is the same as the pressure in the surrounding atmosphere...
Bernoulli's principle is very easy to understand provided the principle is correctly stated. However, we must be careful, because seemingly-small changes in the wording can lead to completely wrong conclusions.
'Demonstrations' of Bernoulli's principle are often given as demonstrations of the physics of lift. They are truly demonstrations of lift, but certainly not of Bernoulli's principle.
...it is often asked why fluid particles should meet up again at the trailing edge. Or, in other words, why should two particles on either side of the wing take the same time to travel from S to T? There is no obvious explanation and real-life observations prove that this is wrong.
...air does not have a reduced lateral pressure (or static pressure...) simply because it is caused to move, the static pressure of free air does not decrease as the speed of the air increases, it misunderstanding Bernoulli's principle to suggest that this is what it tells us, and the behavior of the curved paper is explained by other reasoning than Bernoulli's principle.
An explanation based on Bernoulli's principle is not applicable to this situation, because this principle has nothing to say about the interaction of air masses having different speeds... Also, while Bernoulli's principle allows us to compare fluid speeds and pressures along a single streamline and... along two different streamlines that originate under identical fluid conditions, using Bernoulli's principle to compare the air above and below the curved paper in Figure 1 is nonsensical; in this case, there aren't any streamlines at all below the paper!
The airfoil of the airplane wing, according to the textbook explanation that is more or less standard in the United States, has a special shape with more curvature on top than on the bottom; consequently, the air must travel over the top surface farther than over the bottom surface. Because the air must make the trip over the top and bottom surfaces in the same elapsed time ..., the velocity over the top surface will be greater than over the bottom. According to Bernoulli's theorem, this velocity difference produces a pressure difference which is lift.[permanent dead link ]
...it is often asked why fluid particles should meet up again at the trailing edge. Or, in other words, why should two particles on either side of the wing take the same time to travel from S to T? There is no obvious explanation and real-life observations prove that this is wrong.
In fact, the pressure in the air blown out of the lungs is equal to that of the surrounding air...
Blowing over a piece of paper does not demonstrate Bernoulli's equation. While it is true that a curved paper lifts when flow is applied on one side, this is not because air is moving at different speeds on the two sides... It is false to make a connection between the flow on the two sides of the paper using Bernoulli's equation.
A complete statement of Bernoulli's Theorem is as follows: 'In a flow where no energy is being added or taken away, the sum of its various energies is a constant: consequently where the velocity increases the pressure decreases and vice versa.'
...if a streamline is curved, there must be a pressure gradient across the streamline, with the pressure increasing in the direction away from the centre of curvature.
The curved paper turns the stream of air downward, and this action produces the lift reaction that lifts the paper.
Finally, let's go back to the initial example of a ball levitating in a jet of air. The naive explanation for the stability of the ball in the air stream, 'because pressure in the jet is lower than pressure in the surrounding atmosphere,' is clearly incorrect. The static pressure in the free air jet is the same as the pressure in the surrounding atmosphere...
Asymmetrical flow (not Bernoulli's theorem) also explains lift on the ping-pong ball or beach ball that floats so mysteriously in the tilted vacuum cleaner exhaust...
There is nothing wrong with the Bernoulli principle, or with the statement that the air goes faster over the top of the wing. But, as the above discussion suggests, our understanding is not complete with this explanation. The problem is that we are missing a vital piece when we apply Bernoulli's principle. We can calculate the pressures around the wing if we know the speed of the air over and under the wing, but how do we determine the speed?
The airfoil of the airplane wing, according to the textbook explanation that is more or less standard in the United States, has a special shape with more curvature on top than on the bottom; consequently, the air must travel over the top surface farther than over the bottom surface. Because the air must make the trip over the top and bottom surfaces in the same elapsed time ..., the velocity over the top surface will be greater than over the bottom. According to Bernoulli's theorem, this velocity difference produces a pressure difference which is lift.[permanent dead link ]
...it is often asked why fluid particles should meet up again at the trailing edge. Or, in other words, why should two particles on either side of the wing take the same time to travel from S to T? There is no obvious explanation and real-life observations prove that this is wrong.
In fact, the pressure in the air blown out of the lungs is equal to that of the surrounding air...
Blowing over a piece of paper does not demonstrate Bernoulli's equation. While it is true that a curved paper lifts when flow is applied on one side, this is not because air is moving at different speeds on the two sides... It is false to make a connection between the flow on the two sides of the paper using Bernoulli's equation.
...if a streamline is curved, there must be a pressure gradient across the streamline, with the pressure increasing in the direction away from the centre of curvature.
Finally, let's go back to the initial example of a ball levitating in a jet of air. The naive explanation for the stability of the ball in the air stream, 'because pressure in the jet is lower than pressure in the surrounding atmosphere,' is clearly incorrect. The static pressure in the free air jet is the same as the pressure in the surrounding atmosphere...
Asymmetrical flow (not Bernoulli's theorem) also explains lift on the ping-pong ball or beach ball that floats so mysteriously in the tilted vacuum cleaner exhaust...
Viscosity causes the breath to follow the curved surface, Newton's first law says there a force on the air and Newton's third law says there is an equal and opposite force on the paper. Momentum transfer lifts the strip. The reduction in pressure acting on the top surface of the piece of paper causes the paper to rise.
A second example is the confinement of a ping-pong ball in the vertical exhaust from a hair dryer. We are told that this is a demonstration of Bernoulli's principle. But, we now know that the exhaust does not have a lower value of ps. Again, it is momentum transfer that keeps the ball in the airflow. When the ball gets near the edge of the exhaust there is an asymmetric flow around the ball, which pushes it away from the edge of the flow. The same is true when one blows between two ping-pong balls hanging on strings.
Bernoulli's theorem is often obscured by demonstrations involving non-Bernoulli forces. For example, a ball may be supported on an upward jet of air or water, because any fluid (the air and water) has viscosity, which retards the slippage of one part of the fluid moving past another part of the fluid.
In fact, the pressure in the air blown out of the lungs is equal to that of the surrounding air...
Blowing over a piece of paper does not demonstrate Bernoulli's equation. While it is true that a curved paper lifts when flow is applied on one side, this is not because air is moving at different speeds on the two sides... It is false to make a connection between the flow on the two sides of the paper using Bernoulli's equation.
The well-known demonstration of the phenomenon of lift by means of lifting a page cantilevered in one's hand by blowing horizontally along it is probably more a demonstration of the forces inherent in the Coanda effect than a demonstration of Bernoulli's law; for, here, an air jet issues from the mouth and attaches to a curved (and, in this case pliable) surface. The upper edge is a complicated vortex-laden mixing layer and the distant flow is quiescent, so that Bernoulli's law is hardly applicable.
...if a streamline is curved, there must be a pressure gradient across the streamline, with the pressure increasing in the direction away from the centre of curvature.
Make a strip of writing paper about 5 cm × 25 cm. Hold it in front of your lips so that it hangs out and down making a convex upward surface. When you blow across the top of the paper, it rises. Many books attribute this to the lowering of the air pressure on top solely to the Bernoulli effect. Now use your fingers to form the paper into a curve that it is slightly concave upward along its whole length and again blow along the top of this strip. The paper now bends downward...an often-cited experiment, which is usually taken as demonstrating the common explanation of lift, does not do so...
This occurs because of Bernoulli's principle — fast-moving air has lower pressure than non-moving air.
The curved surface of the tongue creates unequal air pressure and a lifting action. ... Lift is caused by air moving over a curved surface.
The Bernoulli effect is commonly—and incorrectly—invoked to explain: :why two suspended balloons or table tennis balls move toward each other when you blow air between them; :why paper rises when you blow air over it; :why a pitched baseball curves; :why a spoon is drawn toward a stream of water; :why a ball remains suspended in an air jet. Here's the news: None of these phenomena is the result of the Bernoulli effect.
If the lift in figure A were caused by "Bernoulli's principle," then the paper in figure B should droop further when air is blown beneath it. However, as shown, it raises when the upward pressure gradient in downward-curving flow adds to atmospheric pressure at the paper lower surface.
In a demonstration sometimes wrongly described as showing lift due to pressure reduction in moving air or pressure reduction due to flow path restriction, a ball or balloon is suspended by a jet of air.
Some people blow over a sheet of paper to demonstrate that the accelerated air over the sheet results in a lower pressure. They are wrong with their explanation. The sheet of paper goes up because it deflects the air, by the Coanda effect, and that deflection is the cause of the force lifting the sheet. To prove they are wrong I use the following experiment: If the sheet of paper is pre bend the other way by first rolling it, and if you blow over it than, it goes down. This is because the air is deflected the other way. Airspeed is still higher above the sheet, so that is not causing the lower pressure.
...it is often asked why fluid particles should meet up again at the trailing edge. Or, in other words, why should two particles on either side of the wing take the same time to travel from S to T? There is no obvious explanation and real-life observations prove that this is wrong.
In fact, the pressure in the air blown out of the lungs is equal to that of the surrounding air...
Blowing over a piece of paper does not demonstrate Bernoulli's equation. While it is true that a curved paper lifts when flow is applied on one side, this is not because air is moving at different speeds on the two sides... It is false to make a connection between the flow on the two sides of the paper using Bernoulli's equation.
...if a streamline is curved, there must be a pressure gradient across the streamline, with the pressure increasing in the direction away from the centre of curvature.
Bernoulli's Principle states that faster moving air has lower pressure... You can demonstrate Bernoulli's Principle by blowing over a piece of paper held horizontally across your lips.
As an example, take the misleading experiment most often used to "demonstrate" Bernoulli's principle. Hold a piece of paper so that it curves over your finger, then blow across the top. The paper will rise. However most people do not realize that the paper would not rise if it were flat, even though you are blowing air across the top of it at a furious rate. Bernoulli's principle does not apply directly in this case. This is because the air on the two sides of the paper did not start out from the same source. The air on the bottom is ambient air from the room, but the air on the top came from your mouth where you actually increased its speed without decreasing its pressure by forcing it out of your mouth. As a result the air on both sides of the flat paper actually has the same pressure, even though the air on the top is moving faster. The reason that a curved piece of paper does rise is that the air from your mouth speeds up even more as it follows the curve of the paper, which in turn lowers the pressure according to Bernoulli.
This demonstration is often incorrectly explained using the Bernoulli principle. According to the INCORRECT explanation, the air flow is faster in the region between the sheets, thus creating a lower pressure compared with the quiet air on the outside of the sheets.
Although the Bernoulli effect is often used to explain this demonstration, and one manufacturer sells the material for this demonstration as 'Bernoulli bags,' it cannot be explained by the Bernoulli effect, but rather by the process of entrainment.
Faster-moving fluid, lower pressure. ... When the demonstrator holds the paper in front of his mouth and blows across the top, he is creating an area of faster-moving air.
There is nothing wrong with the Bernoulli principle, or with the statement that the air goes faster over the top of the wing. But, as the above discussion suggests, our understanding is not complete with this explanation. The problem is that we are missing a vital piece when we apply Bernoulli's principle. We can calculate the pressures around the wing if we know the speed of the air over and under the wing, but how do we determine the speed?
Faster-moving fluid, lower pressure. ... When the demonstrator holds the paper in front of his mouth and blows across the top, he is creating an area of faster-moving air.
Bernoulli's Principle states that faster moving air has lower pressure... You can demonstrate Bernoulli's Principle by blowing over a piece of paper held horizontally across your lips.
...air does not have a reduced lateral pressure (or static pressure...) simply because it is caused to move, the static pressure of free air does not decrease as the speed of the air increases, it misunderstanding Bernoulli's principle to suggest that this is what it tells us, and the behavior of the curved paper is explained by other reasoning than Bernoulli's principle.
An explanation based on Bernoulli's principle is not applicable to this situation, because this principle has nothing to say about the interaction of air masses having different speeds... Also, while Bernoulli's principle allows us to compare fluid speeds and pressures along a single streamline and... along two different streamlines that originate under identical fluid conditions, using Bernoulli's principle to compare the air above and below the curved paper in Figure 1 is nonsensical; in this case, there aren't any streamlines at all below the paper!
Viscosity causes the breath to follow the curved surface, Newton's first law says there a force on the air and Newton's third law says there is an equal and opposite force on the paper. Momentum transfer lifts the strip. The reduction in pressure acting on the top surface of the piece of paper causes the paper to rise.
As an example, take the misleading experiment most often used to "demonstrate" Bernoulli's principle. Hold a piece of paper so that it curves over your finger, then blow across the top. The paper will rise. However most people do not realize that the paper would not rise if it were flat, even though you are blowing air across the top of it at a furious rate. Bernoulli's principle does not apply directly in this case. This is because the air on the two sides of the paper did not start out from the same source. The air on the bottom is ambient air from the room, but the air on the top came from your mouth where you actually increased its speed without decreasing its pressure by forcing it out of your mouth. As a result the air on both sides of the flat paper actually has the same pressure, even though the air on the top is moving faster. The reason that a curved piece of paper does rise is that the air from your mouth speeds up even more as it follows the curve of the paper, which in turn lowers the pressure according to Bernoulli.
Some people blow over a sheet of paper to demonstrate that the accelerated air over the sheet results in a lower pressure. They are wrong with their explanation. The sheet of paper goes up because it deflects the air, by the Coanda effect, and that deflection is the cause of the force lifting the sheet. To prove they are wrong I use the following experiment: If the sheet of paper is pre bend the other way by first rolling it, and if you blow over it than, it goes down. This is because the air is deflected the other way. Airspeed is still higher above the sheet, so that is not causing the lower pressure.
Bernoulli's theorem is often obscured by demonstrations involving non-Bernoulli forces. For example, a ball may be supported on an upward jet of air or water, because any fluid (the air and water) has viscosity, which retards the slippage of one part of the fluid moving past another part of the fluid.
A second example is the confinement of a ping-pong ball in the vertical exhaust from a hair dryer. We are told that this is a demonstration of Bernoulli's principle. But, we now know that the exhaust does not have a lower value of ps. Again, it is momentum transfer that keeps the ball in the airflow. When the ball gets near the edge of the exhaust there is an asymmetric flow around the ball, which pushes it away from the edge of the flow. The same is true when one blows between two ping-pong balls hanging on strings.
This demonstration is often incorrectly explained using the Bernoulli principle. According to the INCORRECT explanation, the air flow is faster in the region between the sheets, thus creating a lower pressure compared with the quiet air on the outside of the sheets.
Although the Bernoulli effect is often used to explain this demonstration, and one manufacturer sells the material for this demonstration as 'Bernoulli bags,' it cannot be explained by the Bernoulli effect, but rather by the process of entrainment.
A complete statement of Bernoulli's Theorem is as follows: 'In a flow where no energy is being added or taken away, the sum of its various energies is a constant: consequently where the velocity increases the pressure decreases and vice versa.'
The curved paper turns the stream of air downward, and this action produces the lift reaction that lifts the paper.
One of the most widely circulated, but incorrect, explanations can be labeled the "Longer Path" theory, or the "Equal Transit Time" theory.