Biclique-free graph (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Biclique-free graph" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
451st place
277th place
69th place
59th place
2,656th place
5,310th place
low place
low place
1st place
1st place
4,170th place
3,980th place

ams.org

mathscinet.ams.org

  • Kővári, T.; T. Sós, V.; Turán, P. (1954), "On a problem of K. Zarankiewicz" (PDF), Colloquium Math., 3: 50–57, MR 0065617. This work concerns the number of edges in biclique-free bipartite graphs, but a standard application of the probabilistic method transfers the same bound to arbitrary graphs.
  • Erdős, P.; Hajnal, A.; Moon, J. W. (1964), "A problem in graph theory" (PDF), The American Mathematical Monthly, 71: 1107–1110, doi:10.2307/2311408, MR 0170339.
  • Kaplan, Haim; Matoušek, Jiří; Sharir, Micha (2012), "Simple proofs of classical theorems in discrete geometry via the Guth–Katz polynomial partitioning technique", Discrete and Computational Geometry, 48 (3): 499–517, arXiv:1102.5391, doi:10.1007/s00454-012-9443-3, MR 2957631. See in particular Lemma 3.1 and the remarks following the lemma.

arxiv.org

doi.org

icm.edu.pl

matwbn.icm.edu.pl

  • Kővári, T.; T. Sós, V.; Turán, P. (1954), "On a problem of K. Zarankiewicz" (PDF), Colloquium Math., 3: 50–57, MR 0065617. This work concerns the number of edges in biclique-free bipartite graphs, but a standard application of the probabilistic method transfers the same bound to arbitrary graphs.

renyi.hu

uib.no

folk.uib.no

web.archive.org