Analysis of information sources in references of the Wikipedia article "Bioenergetics" in English language version.
Crane in 1961 was the first to formulate the cotransport concept to explain active transport [7]. Specifically, he proposed that the accumulation of glucose in the intestinal epithelium across the brush border membrane was coupled to downhill Na+
transport cross the brush border. This hypothesis was rapidly tested, refined and extended [to] encompass the active transport of a diverse range of molecules and ions into virtually every cell type.
the insight from this time that remains in all current text books is the notion of Robert Crane published originally as an appendix to a symposium paper published in 1960 (Crane et al. 1960). The key point here was 'flux coupling', the cotransport of sodium and glucose in the apical membrane of the small intestinal epithelial cell. Half a century later this idea has turned into one of the most studied of all transporter proteins (SGLT1), the sodium–glucose cotransporter.
However, in normal individuals, body weight and body fat content are typically quite stable over time2,3 owing to a biological process termed 'energy homeostasis' that matches energy intake to expenditure over long periods of time. The energy homeostasis system comprises neurons in the mediobasal hypothalamus and other brain areas4 that are a part of a neurocircuit that regulates food intake in response to input from humoral signals that circulate at concentrations proportionate to body fat content4-6. ... An emerging concept in the neurobiology of food intake is that neurocircuits exist that are normally inhibited, but when activated in response to emergent or stressful stimuli they can override the homeostatic control of energy balance. Understanding how these circuits interact with the energy homeostasis system is fundamental to understanding the control of food intake and may bear on the pathogenesis of disorders at both ends of the body weight spectrum.
Crane in 1961 was the first to formulate the cotransport concept to explain active transport [7]. Specifically, he proposed that the accumulation of glucose in the intestinal epithelium across the brush border membrane was coupled to downhill Na+
transport cross the brush border. This hypothesis was rapidly tested, refined and extended [to] encompass the active transport of a diverse range of molecules and ions into virtually every cell type.
the insight from this time that remains in all current text books is the notion of Robert Crane published originally as an appendix to a symposium paper published in 1960 (Crane et al. 1960). The key point here was 'flux coupling', the cotransport of sodium and glucose in the apical membrane of the small intestinal epithelial cell. Half a century later this idea has turned into one of the most studied of all transporter proteins (SGLT1), the sodium–glucose cotransporter.
However, in normal individuals, body weight and body fat content are typically quite stable over time2,3 owing to a biological process termed 'energy homeostasis' that matches energy intake to expenditure over long periods of time. The energy homeostasis system comprises neurons in the mediobasal hypothalamus and other brain areas4 that are a part of a neurocircuit that regulates food intake in response to input from humoral signals that circulate at concentrations proportionate to body fat content4-6. ... An emerging concept in the neurobiology of food intake is that neurocircuits exist that are normally inhibited, but when activated in response to emergent or stressful stimuli they can override the homeostatic control of energy balance. Understanding how these circuits interact with the energy homeostasis system is fundamental to understanding the control of food intake and may bear on the pathogenesis of disorders at both ends of the body weight spectrum.
However, in normal individuals, body weight and body fat content are typically quite stable over time2,3 owing to a biological process termed 'energy homeostasis' that matches energy intake to expenditure over long periods of time. The energy homeostasis system comprises neurons in the mediobasal hypothalamus and other brain areas4 that are a part of a neurocircuit that regulates food intake in response to input from humoral signals that circulate at concentrations proportionate to body fat content4-6. ... An emerging concept in the neurobiology of food intake is that neurocircuits exist that are normally inhibited, but when activated in response to emergent or stressful stimuli they can override the homeostatic control of energy balance. Understanding how these circuits interact with the energy homeostasis system is fundamental to understanding the control of food intake and may bear on the pathogenesis of disorders at both ends of the body weight spectrum.
Crane in 1961 was the first to formulate the cotransport concept to explain active transport [7]. Specifically, he proposed that the accumulation of glucose in the intestinal epithelium across the brush border membrane was coupled to downhill Na+
transport cross the brush border. This hypothesis was rapidly tested, refined and extended [to] encompass the active transport of a diverse range of molecules and ions into virtually every cell type.
the insight from this time that remains in all current text books is the notion of Robert Crane published originally as an appendix to a symposium paper published in 1960 (Crane et al. 1960). The key point here was 'flux coupling', the cotransport of sodium and glucose in the apical membrane of the small intestinal epithelial cell. Half a century later this idea has turned into one of the most studied of all transporter proteins (SGLT1), the sodium–glucose cotransporter.