Bivector (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Bivector" in English language version.

refsWebsite
Global rank English rank
3rd place
3rd place
6th place
6th place
27th place
51st place
low place
low place
207th place
136th place
2nd place
2nd place
11th place
8th place

archive.org

books.google.com

  • Dorst, Leo; Fontijne, Daniel; Mann, Stephen (2009). Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry (2nd ed.). Morgan Kaufmann. p. 32. ISBN 978-0-12-374942-0. The algebraic bivector is not specific on shape; geometrically it is an amount of directed area in a specific plane, that's all.
  • Hestenes, David (1999). New foundations for classical mechanics: Fundamental Theories of Physics (2nd ed.). Springer. p. 21. ISBN 978-0-7923-5302-7.
  • Parshall, Karen Hunger; Rowe, David E. (1997). The Emergence of the American Mathematical Research Community, 1876–1900. American Mathematical Society. p. 31 ff. ISBN 978-0-8218-0907-5.
  • Farouki, Rida T. (2007). "Chapter 5: Quaternions". Pythagorean-hodograph curves: algebra and geometry inseparable. Springer. p. 60 ff. ISBN 978-3-540-73397-3.
  • Boulanger, Philippe; Hayes, Michael A. (1993). Bivectors and waves in mechanics and optics. Springer. ISBN 978-0-412-46460-7.
  • Boulanger, P.H.; Hayes, M. (1991). "Bivectors and inhomogeneous plane waves in anisotropic elastic bodies". In Wu, Julian J.; Ting, Thomas Chi-tsai; Barnett, David M. (eds.). Modern theory of anisotropic elasticity and applications. Society for Industrial and Applied Mathematics (SIAM). p. 280 et seq. ISBN 978-0-89871-289-6.
  • Hestenes 1999, p. 61
  • Chris Doran; Anthony Lasenby (2003). Geometric algebra for physicists. Cambridge University Press. p. 56. ISBN 978-0-521-48022-2.

davidhestenes.net

doi.org

psu.edu

citeseerx.ist.psu.edu

semanticscholar.org

api.semanticscholar.org

wikisource.org

en.wikisource.org