Diestel, Joseph; Uhl, Jr., John Jerry (1977). Vector Measures. Mathematical Surveys. American Mathematical Society. doi:10.1090/surv/015. (See Theorem II.2.6)
Bourgin 1983, pp. 31, 33. Thm. 2.3.6-7, conditions (1,4,10). Bourgin, Richard D. (1983). Geometric Aspects of Convex Sets with the Radon-Nikodým Property. Lecture Notes in Mathematics 993. Berlin: Springer-Verlag. doi:10.1007/BFb0069321. ISBN3-540-12296-6.
Bourgin 1983, p. 16. "Early workers in this field were concerned with the Banach space property that each X-valued function of bounded variation on [0,1] be differentiable almost surely. It turns out that this property (known as the Gelfand-Fréchet property) is also equivalent to the RNP [Radon-Nikodym Property]." Bourgin, Richard D. (1983). Geometric Aspects of Convex Sets with the Radon-Nikodým Property. Lecture Notes in Mathematics 993. Berlin: Springer-Verlag. doi:10.1007/BFb0069321. ISBN3-540-12296-6.
Bourgin 1983, p. 14. Bourgin, Richard D. (1983). Geometric Aspects of Convex Sets with the Radon-Nikodým Property. Lecture Notes in Mathematics 993. Berlin: Springer-Verlag. doi:10.1007/BFb0069321. ISBN3-540-12296-6.