Bramble (graph theory) (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Bramble (graph theory)" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
451st place
277th place
11th place
8th place
18th place
17th place
1,185th place
840th place
69th place
59th place

acm.org

dl.acm.org

ams.org

mathscinet.ams.org

  • Seymour, Paul D.; Thomas, Robin (1993), "Graph searching and a min-max theorem for tree-width", Journal of Combinatorial Theory, Series B, 58 (1): 22–33, doi:10.1006/jctb.1993.1027, MR 1214888. In this reference, brambles are called "screens" and their order is called "thickness".
  • Grohe, Martin; Marx, Dániel (2009), "On tree width, bramble size, and expansion", Journal of Combinatorial Theory, Series B, 99 (1): 218–228, doi:10.1016/j.jctb.2008.06.004, MR 2467827.
  • Chapelle, Mathieu; Mazoit, Frédéric; Todinca, Ioan (2009), "Constructing brambles", Mathematical Foundations of Computer Science 2009: 34th International Symposium, MFCS 2009, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009, Proceedings, Lecture Notes in Computer Science, vol. 5734, Berlin: Springer, pp. 223–234, Bibcode:2009LNCS.5734..223C, doi:10.1007/978-3-642-03816-7_20, ISBN 978-3-642-03815-0, MR 2539494, S2CID 16299415.
  • Bodlaender, Hans L.; Grigoriev, Alexander; Koster, Arie M. C. A. (2008), "Treewidth lower bounds with brambles", Algorithmica, 51 (1): 81–98, doi:10.1007/s00453-007-9056-z, MR 2385750.

arxiv.org

doi.org

  • Seymour, Paul D.; Thomas, Robin (1993), "Graph searching and a min-max theorem for tree-width", Journal of Combinatorial Theory, Series B, 58 (1): 22–33, doi:10.1006/jctb.1993.1027, MR 1214888. In this reference, brambles are called "screens" and their order is called "thickness".
  • Grohe, Martin; Marx, Dániel (2009), "On tree width, bramble size, and expansion", Journal of Combinatorial Theory, Series B, 99 (1): 218–228, doi:10.1016/j.jctb.2008.06.004, MR 2467827.
  • Chapelle, Mathieu; Mazoit, Frédéric; Todinca, Ioan (2009), "Constructing brambles", Mathematical Foundations of Computer Science 2009: 34th International Symposium, MFCS 2009, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009, Proceedings, Lecture Notes in Computer Science, vol. 5734, Berlin: Springer, pp. 223–234, Bibcode:2009LNCS.5734..223C, doi:10.1007/978-3-642-03816-7_20, ISBN 978-3-642-03815-0, MR 2539494, S2CID 16299415.
  • Bodlaender, Hans L.; Grigoriev, Alexander; Koster, Arie M. C. A. (2008), "Treewidth lower bounds with brambles", Algorithmica, 51 (1): 81–98, doi:10.1007/s00453-007-9056-z, MR 2385750.
  • Reed, Bruce (1999), "Introducing directed tree width", Electronic Notes in Discrete Mathematics, vol. 3, Elsevier, pp. 222–229, doi:10.1016/S1571-0653(05)80061-7
  • Johnson, Thor; Robertson, Neil; Seymour, Paul; Thomas, Robin (2001), "Directed Tree-Width", Journal of Combinatorial Theory, Series B, vol. 82, pp. 138–154, doi:10.1006/jctb.2000.2031
  • Kawarabayashi, Ken-ichi; Kreutzer, Stephan (2015), "The Directed Grid Theorem", Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing (STOC '15), Portland, Oregon, USA: ACM, pp. 655–664, arXiv:1411.5681, doi:10.1145/2746539.2746586, ISBN 978-1-4503-3536-2, S2CID 1517283

harvard.edu

ui.adsabs.harvard.edu

semanticscholar.org

api.semanticscholar.org