Analysis of information sources in references of the Wikipedia article "Bufotenin" in English language version.
The weaker pKa of psilocin relative to bufotenine means that psilocin is less highly ionized at pH 7.4—that is, 8.5% free base versus 0.53% for bufotenine at pH 7.4. Ionized amines must be unionized and desolvated to cross the blood–brain barrier; the intramolecular H bond in psilocin compensates for that as reflected by the higher lipophilicity of psilocin relative to bufotenine. [...] This would explain why bufotenine is still an agonist at the 5-HT2A receptor but due to its poor physiochemical properties is not psychoactive in humans.
In contrast to DMT, psilocybin is orally active. [...] A structurally related molecule, [5-HO-DMT], known as bufotenine, is inactive after oral administration. How does the simple transposition of the hydroxy from the 4 to the 5 position alter the physicochemical properties of the DMT core? We asked that question more than four decades ago. In a study by Migliaccio et al. (1981), the 360 MHz proton NMR, the amine pKa values and the octanol–water Log P values were determined experimentally and compared for both psilocin and bufotenine (Figure 3a). The side chain protons in the NMR for bufotenine were shown to be rapidly rotating with no preference for gauche or trans conformations, whereas the side chain for psilocin was less mobile and was determined to favour a gauche (80%) versus trans (20%) conformation. Because psilocin is a weaker base but is also more lipid soluble, it was proposed that psilocin formed an intramolecular hydrogen bond, as illustrated in Figure 3a. In the energy-minimized structure of this conformation, the length of the hydrogen bond is 1.88 Å. The weaker pKa of psilocin relative to bufotenine means that psilocin is less highly ionized at pH 7.4—that is, 8.5% free base versus 0.53% for bufotenine at pH 7.4. Ionized amines must be unionized and desolvated to cross the blood–brain barrier; the intramolecular H bond in psilocin compensates for that as reflected by the higher lipophilicity of psilocin relative to bufotenine. Finally, the mechanism of deamination by MAO involves either a single electron transfer or a nucleophilic mechanism (Gaweska & Fitzpatrick, 2011; Zapata-Torres et al., 2015), either of which is more enzymically difficult when the amine electrons are hydrogen-bonded by the 4-hydroxy group (Figure 3a). Very recently, Lenz et al. (2022) have confirmed and extended the finding of the potential intramolecular hydrogen bond partially being responsible for slow MAO deamination as well as psilocin's enhanced ability to cross the blood–brain barrier. [...] This would explain why bufotenine is still an agonist at the 5-HT2A receptor but due to its poor physiochemical properties is not psychoactive in humans.
And so it is with bufotenine. Is it an active psychedelic? Absolutely yes, absolutely no, and maybe yes and maybe no. [...] Some clinicians demand that the compound is unquestionably a psychotomimetic and it must be catalogued right up there along with LSD and psilocybin. Others, equally sincere, present human trials that suggest only peripheral toxicity and conclude that there is no central action to be seen. And there are many who state that there are no effects for it at all, either inside or outside the CNS. The psychopharmacological status of bufotenine, like that of Uri Geller, may be essentially unanswerable. [...] A second report carries, at least for me, much more impact. A study of the use of the seeds of a South American legume, Anadenanthera colubrina var. Cebil by the Argentine Shamans in Chaco Central, shows then to be dramatically psychedelic. And yet, extremely sophisticated spectroscopic analysis has shown them to contain bufotenine and only bufotenine as their alkaloid component. At the bottom line, I do not really know of bufotenine is a psychedelic drug. Maybe yes and maybe no.
The weaker pKa of psilocin relative to bufotenine means that psilocin is less highly ionized at pH 7.4—that is, 8.5% free base versus 0.53% for bufotenine at pH 7.4. Ionized amines must be unionized and desolvated to cross the blood–brain barrier; the intramolecular H bond in psilocin compensates for that as reflected by the higher lipophilicity of psilocin relative to bufotenine. [...] This would explain why bufotenine is still an agonist at the 5-HT2A receptor but due to its poor physiochemical properties is not psychoactive in humans.
In contrast to DMT, psilocybin is orally active. [...] A structurally related molecule, [5-HO-DMT], known as bufotenine, is inactive after oral administration. How does the simple transposition of the hydroxy from the 4 to the 5 position alter the physicochemical properties of the DMT core? We asked that question more than four decades ago. In a study by Migliaccio et al. (1981), the 360 MHz proton NMR, the amine pKa values and the octanol–water Log P values were determined experimentally and compared for both psilocin and bufotenine (Figure 3a). The side chain protons in the NMR for bufotenine were shown to be rapidly rotating with no preference for gauche or trans conformations, whereas the side chain for psilocin was less mobile and was determined to favour a gauche (80%) versus trans (20%) conformation. Because psilocin is a weaker base but is also more lipid soluble, it was proposed that psilocin formed an intramolecular hydrogen bond, as illustrated in Figure 3a. In the energy-minimized structure of this conformation, the length of the hydrogen bond is 1.88 Å. The weaker pKa of psilocin relative to bufotenine means that psilocin is less highly ionized at pH 7.4—that is, 8.5% free base versus 0.53% for bufotenine at pH 7.4. Ionized amines must be unionized and desolvated to cross the blood–brain barrier; the intramolecular H bond in psilocin compensates for that as reflected by the higher lipophilicity of psilocin relative to bufotenine. Finally, the mechanism of deamination by MAO involves either a single electron transfer or a nucleophilic mechanism (Gaweska & Fitzpatrick, 2011; Zapata-Torres et al., 2015), either of which is more enzymically difficult when the amine electrons are hydrogen-bonded by the 4-hydroxy group (Figure 3a). Very recently, Lenz et al. (2022) have confirmed and extended the finding of the potential intramolecular hydrogen bond partially being responsible for slow MAO deamination as well as psilocin's enhanced ability to cross the blood–brain barrier. [...] This would explain why bufotenine is still an agonist at the 5-HT2A receptor but due to its poor physiochemical properties is not psychoactive in humans.
[Morris:] I've used [bufotenine] a couple times, once at 50 milligrams of the freebase snorted. [...] I found it to be extremely nauseating. I found it to be qualitatively intermediate between 5-MeO-DMT and DMT in that it was more visual than my experiences with 5-MeO-DMT but less visual than my typical experiences with DMT. It had a longer duration than 5-MeO-DMT and maybe even a longer duration than DMT as well. It was about an hour. Although I don't have all that much experience snorting DMT freebase.
[Morris:] Bufotenine is a drug that I have tried. I've tried isolated pure bufotenine and it is a psychedelic that is both pharmacologically and experientially and chemically intermediate between DMT and 5-MeO-DMT. So it has a longer duration than actually both 5-MeO-DMT and DMT. It's yet less visual than DMT but more visual than 5-MeO-DMT, so it's kind of like in-between the two. It's also very nauseating, which is the main reason that people seem not to enjoy it very much. But it is a classical psychedelic drug that produces visionary effects. And Jonathan Ott actually liked the effect of it quite a bit.
And so it is with bufotenine. Is it an active psychedelic? Absolutely yes, absolutely no, and maybe yes and maybe no. [...] Some clinicians demand that the compound is unquestionably a psychotomimetic and it must be catalogued right up there along with LSD and psilocybin. Others, equally sincere, present human trials that suggest only peripheral toxicity and conclude that there is no central action to be seen. And there are many who state that there are no effects for it at all, either inside or outside the CNS. The psychopharmacological status of bufotenine, like that of Uri Geller, may be essentially unanswerable. [...] A second report carries, at least for me, much more impact. A study of the use of the seeds of a South American legume, Anadenanthera colubrina var. Cebil by the Argentine Shamans in Chaco Central, shows then to be dramatically psychedelic. And yet, extremely sophisticated spectroscopic analysis has shown them to contain bufotenine and only bufotenine as their alkaloid component. At the bottom line, I do not really know of bufotenine is a psychedelic drug. Maybe yes and maybe no.