Categorical quantum mechanics (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Categorical quantum mechanics" in English language version.

refsWebsite
Global rank English rank
69th place
59th place
2nd place
2nd place
11th place
8th place
18th place
17th place
207th place
136th place
3rd place
3rd place
5th place
5th place
9,586th place
6,136th place
4th place
4th place
485th place
440th place
1,725th place
1,828th place
613th place
456th place

arxiv.org

  • Abramsky, Samson; Coecke, Bob (2004). "A categorical semantics of quantum protocols". Proceedings of the 19th IEEE conference on Logic in Computer Science (LiCS'04). IEEE. arXiv:quant-ph/0402130.
  • Coecke, B.; Pavlovic, D. (2007). "16. Quantum measurements without sums §16.2 Categorial Semantics". Mathematics of Quantum Computing and Technology. Taylor and Francis. pp. 567–604. arXiv:quant-ph/0608035. ISBN 9781584889007.
  • Coecke, B.; Perdrix, S. (2012). "Environment and classical channels in categorical quantum mechanics". Proceedings of the 19th EACSL Annual Conference on Computer Science Logic (CSL). Lecture Notes in Computer Science. Vol. 6247. Springer. arXiv:1004.1598. doi:10.2168/LMCS-8(4:14)2012. S2CID 16833406.
  • Coecke, B.; Duncan, R. (2011). "Interacting quantum observables". Proceedings of the 35th International Colloquium on Automata, Languages and Programming (ICALP). Lecture Notes in Computer Science. Vol. 5126. pp. 298–310. arXiv:0906.4725. doi:10.1088/1367-2630/13/4/043016. S2CID 14259278.
  • Coecke, B. (2010). "Quantum picturalism". Contemporary Physics. 51 (1): 59–83. arXiv:0908.1787. Bibcode:2010ConPh..51...59C. doi:10.1080/00107510903257624. S2CID 752173.
  • Backens, Miriam (2014). "The ZX-calculus is complete for stabilizer quantum mechanics". New Journal of Physics. 16 (9): 093021. arXiv:1307.7025. Bibcode:2014NJPh...16i3021B. doi:10.1088/1367-2630/16/9/093021. ISSN 1367-2630. S2CID 27558474.
  • Jeandel, Emmanuel; Perdrix, Simon; Vilmart, Renaud (2017-05-31). "A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics". arXiv:1705.11151 [quant-ph].
  • Baez, J.C. (2004). "Quantum quandaries: a category-theoretic perspective". In Rickles, D.; French, S. (eds.). The Structural Foundations of Quantum Gravity. Oxford University Press. pp. 240–266. arXiv:quant-ph/0404040. ISBN 978-0-19-926969-3.
  • Coecke, B.; Pavlovic, D.; Vicary, J. (2013). "A new description of orthogonal bases". Mathematical Structures in Computer Science. 23 (3): 555–567. arXiv:0810.0812. CiteSeerX 10.1.1.244.6490. doi:10.1017/S0960129512000047. S2CID 12608889.
  • Abramsky, S.; Heunen, C. (2010). "H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics". Clifford Lectures, AMS Proceedings of Symposia in Applied Mathematics. arXiv:1011.6123. to appear (2010).
  • Vicary, J. (2011). "Completeness of dagger-categories and the complex numbers". Journal of Mathematical Physics. 52 (8): 082104. arXiv:0807.2927. Bibcode:2011JMP....52h2104V. doi:10.1063/1.3549117. S2CID 115154127.
  • Heunen, C. (2008). "An embedding theorem for Hilbert categories". Theory and Applications of Categories. 22: 321–344. arXiv:0811.1448.
  • Heunen, C.; Kornell, A. (2022). "Axioms for the category of Hilbert spaces". Proceedings of the National Academy of Sciences. 119 (9): e2117024119. arXiv:2109.07418. Bibcode:2022PNAS..11917024H. doi:10.1073/pnas.2117024119. PMC 8892366. PMID 35217613.
  • Pavlovic, D. (2009). "Quantum and classical structures in nondeterminstic computation". Quantum Interaction. QI 2009. Lecture Notes in Computer Science. Vol. 5494. Springer. pp. 143–157. arXiv:0812.2266. doi:10.1007/978-3-642-00834-4_13. ISBN 978-3-642-00834-4. S2CID 11615031.(2009).
  • Evans, J.; Duncan, R.; Lang, A.; Panangaden, P. (2009). "Classifying all mutually unbiased bases in Rel". arXiv:0909.4453 [quant-ph].
  • Coecke, B.; Kissinger, A. (2010). "The compositional structure of multipartite quantum entanglement". Proceedings of the 37th International Colloquium on Automata, Languages and Programming (ICALP). Lecture Notes in Computer Science. Vol. 6199. Springer. pp. 297–308. arXiv:1002.2540.
  • Heunen, C.; Jacobs, B. (2009). "Quantum logic in dagger kernel categories". Order. 27 (2): 177–212. arXiv:0902.2355. doi:10.1007/s11083-010-9145-5. S2CID 2760251.
  • Coecke, B.; Edwards, B.; Spekkens, R.W. (2011). "Phase groups and the origin of non-locality for qubits". Electronic Notes in Theoretical Computer Science. 270 (2): 15–36. arXiv:1003.5005. doi:10.1016/j.entcs.2011.01.021. S2CID 27998267., to appear (2010).
  • Coecke, Bob; Sadrzadeh, Mehrnoosh; Clark, Stephen (2010-03-23). "Mathematical Foundations for a Compositional Distributional Model of Meaning". arXiv:1003.4394 [cs.CL].
  • Sadrzadeh, Mehrnoosh; Clark, Stephen; Coecke, Bob (2013-12-01). "The Frobenius anatomy of word meanings I: subject and object relative pronouns". Journal of Logic and Computation. 23 (6): 1293–1317. arXiv:1404.5278. doi:10.1093/logcom/ext044. ISSN 0955-792X.
  • Sadrzadeh, Mehrnoosh; Clark, Stephen; Coecke, Bob (2016). "The Frobenius anatomy of word meanings II: possessive relative pronouns". Journal of Logic and Computation. 26 (2): 785–815. arXiv:1406.4690. doi:10.1093/logcom/exu027.
  • Coecke, Bob; de Felice, Giovanni; Meichanetzidis, Konstantinos; Toumi, Alexis (2020-12-07). "Foundations for Near-Term Quantum Natural Language Processing". arXiv:2012.03755 [quant-ph].

books.google.com

dal.ca

mscs.dal.ca

doi.org

harvard.edu

ui.adsabs.harvard.edu

iop.org

stacks.iop.org

nih.gov

ncbi.nlm.nih.gov

pubmed.ncbi.nlm.nih.gov

oup.com

global.oup.com

ox.ac.uk

cs.ox.ac.uk

psu.edu

citeseerx.ist.psu.edu

semanticscholar.org

api.semanticscholar.org

worldcat.org

search.worldcat.org