Chernoff bound (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Chernoff bound" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
5th place
5th place
69th place
59th place
11th place
8th place
1st place
1st place
26th place
20th place
3rd place
3rd place
580th place
462nd place
low place
low place
low place
9,832nd place
low place
low place
149th place
178th place
2,542nd place
1,675th place
207th place
136th place
low place
low place

arxiv.org (Global: 69th place; English: 59th place)

berkeley.edu (Global: 580th place; English: 462nd place)

stat.berkeley.edu

cs.berkeley.edu

books.google.com (Global: 3rd place; English: 3rd place)

crcpress.com (Global: low place; English: 9,832nd place)

desmos.com (Global: low place; English: low place)

doi.org (Global: 2nd place; English: 2nd place)

jstor.org (Global: 26th place; English: 20th place)

ncsu.edu (Global: 2,542nd place; English: 1,675th place)

repository.lib.ncsu.edu

niss.org (Global: low place; English: low place)

nisla05.niss.org

nowpublishers.com (Global: low place; English: low place)

psu.edu (Global: 207th place; English: 136th place)

citeseerx.ist.psu.edu

sciencedirect.com (Global: 149th place; English: 178th place)

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

web.archive.org (Global: 1st place; English: 1st place)

worldcat.org (Global: 5th place; English: 5th place)

search.worldcat.org

  • Boucheron, Stéphane (2013). Concentration Inequalities: a Nonasymptotic Theory of Independence. Gábor Lugosi, Pascal Massart. Oxford: Oxford University Press. p. 21. ISBN 978-0-19-953525-5. OCLC 837517674.
  • Vershynin, Roman (2018). High-dimensional probability : an introduction with applications in data science. Cambridge, United Kingdom. p. 19. ISBN 978-1-108-41519-4. OCLC 1029247498.{{cite book}}: CS1 maint: location missing publisher (link)
  • Tropp, Joel A. (2015-05-26). "An Introduction to Matrix Concentration Inequalities". Foundations and Trends in Machine Learning. 8 (1–2): 60. arXiv:1501.01571. doi:10.1561/2200000048. ISSN 1935-8237. S2CID 5679583.
  • Chernoff, Herman (1952). "A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations". The Annals of Mathematical Statistics. 23 (4): 493–507. doi:10.1214/aoms/1177729330. ISSN 0003-4851. JSTOR 2236576.
  • Philips, Thomas K.; Nelson, Randolph (1995). "The Moment Bound Is Tighter Than Chernoff's Bound for Positive Tail Probabilities". The American Statistician. 49 (2): 175–178. doi:10.2307/2684633. ISSN 0003-1305. JSTOR 2684633.
  • Ghosh, Malay (2021-03-04). "Exponential Tail Bounds for Chisquared Random Variables". Journal of Statistical Theory and Practice. 15 (2) 35. doi:10.1007/s42519-020-00156-x. ISSN 1559-8616. S2CID 233546315.
  • Theodosopoulos, Ted (2007-03-01). "A reversion of the Chernoff bound". Statistics & Probability Letters. 77 (5): 558–565. arXiv:math/0501360. doi:10.1016/j.spl.2006.09.003. ISSN 0167-7152. S2CID 16139953.