Competitive Lotka–Volterra equations (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Competitive Lotka–Volterra equations" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
5th place
5th place
11th place
8th place
18th place
17th place
4th place
4th place
1,523rd place
976th place
1,031st place
879th place

archives-ouvertes.fr

hal.archives-ouvertes.fr

doi.org

  • Bomze, Immanuel M. (1983). "Lotka-Volterra equation and replicator dynamics: A two-dimensional classification". Biological Cybernetics. 48 (3). Springer Science and Business Media LLC: 201–211. doi:10.1007/bf00318088. ISSN 0340-1200. S2CID 206774680.
  • Bomze, Immanuel M. (1995). "Lotka-Volterra equation and replicator dynamics: new issues in classification". Biological Cybernetics. 72 (5). Springer Science and Business Media LLC: 447–453. doi:10.1007/bf00201420. ISSN 0340-1200. S2CID 18754189.
  • Smale, S. (1976). "On the differential equations of species in competition". Journal of Mathematical Biology. 3 (1). Springer Science and Business Media LLC: 5–7. doi:10.1007/bf00307854. ISSN 0303-6812. PMID 1022822. S2CID 33201460.
  • Hirsch, Morris W. (1985). "Systems of Differential Equations that are Competitive or Cooperative II: Convergence Almost Everywhere". SIAM Journal on Mathematical Analysis. 16 (3). Society for Industrial & Applied Mathematics (SIAM): 423–439. doi:10.1137/0516030. ISSN 0036-1410.
  • Hirsch, M W (1988-02-01). "Systems of differential equations which are competitive or cooperative: III. Competing species". Nonlinearity. 1 (1). IOP Publishing: 51–71. Bibcode:1988Nonli...1...51H. doi:10.1088/0951-7715/1/1/003. ISSN 0951-7715. S2CID 250848783.
  • Hirsch, Morris W. (1990). "Systems of Differential Equations That are Competitive or Cooperative. IV: Structural Stability in Three-Dimensional Systems". SIAM Journal on Mathematical Analysis. 21 (5). Society for Industrial & Applied Mathematics (SIAM): 1225–1234. doi:10.1137/0521067. ISSN 0036-1410.
  • Kondoh, M. (2003-02-28). "Foraging Adaptation and the Relationship Between Food-Web Complexity and Stability". Science. 299 (5611). American Association for the Advancement of Science (AAAS): 1388–1391. doi:10.1126/science.1079154. ISSN 0036-8075. PMID 12610303. S2CID 129162096.
  • Ackland, G. J.; Gallagher, I. D. (2004-10-08). "Stabilization of Large Generalized Lotka-Volterra Foodwebs By Evolutionary Feedback". Physical Review Letters. 93 (15). American Physical Society (APS): 158701. Bibcode:2004PhRvL..93o8701A. doi:10.1103/physrevlett.93.158701. ISSN 0031-9007. PMID 15524949.
  • Vano, J A; Wildenberg, J C; Anderson, M B; Noel, J K; Sprott, J C (2006-09-15). "Chaos in low-dimensional Lotka–Volterra models of competition". Nonlinearity. 19 (10). IOP Publishing: 2391–2404. Bibcode:2006Nonli..19.2391V. doi:10.1088/0951-7715/19/10/006. ISSN 0951-7715. S2CID 9417299.
  • Roques, Lionel; Chekroun, Mickaël D. (2011). "Probing chaos and biodiversity in a simple competition model" (PDF). Ecological Complexity. 8 (1). Elsevier BV: 98–104. doi:10.1016/j.ecocom.2010.08.004. ISSN 1476-945X.
  • Nese, Jon M. (1989). "Quantifying local predictability in phase space". Physica D: Nonlinear Phenomena. 35 (1–2). Elsevier BV: 237–250. Bibcode:1989PhyD...35..237N. doi:10.1016/0167-2789(89)90105-x. ISSN 0167-2789.
  • Sprott, J.C.; Wildenberg, J.C.; Azizi, Yousef (2005). "A simple spatiotemporal chaotic Lotka–Volterra model". Chaos, Solitons & Fractals. 26 (4). Elsevier BV: 1035–1043. Bibcode:2005CSF....26.1035S. doi:10.1016/j.chaos.2005.02.015. ISSN 0960-0779.
  • Wildenberg, J.C.; Vano, J.A.; Sprott, J.C. (2006). "Complex spatiotemporal dynamics in Lotka–Volterra ring systems". Ecological Complexity. 3 (2). Elsevier BV: 140–147. doi:10.1016/j.ecocom.2005.12.001. ISSN 1476-945X.

escholarship.org

harvard.edu

ui.adsabs.harvard.edu

nih.gov

pubmed.ncbi.nlm.nih.gov

semanticscholar.org

api.semanticscholar.org

  • Bomze, Immanuel M. (1983). "Lotka-Volterra equation and replicator dynamics: A two-dimensional classification". Biological Cybernetics. 48 (3). Springer Science and Business Media LLC: 201–211. doi:10.1007/bf00318088. ISSN 0340-1200. S2CID 206774680.
  • Bomze, Immanuel M. (1995). "Lotka-Volterra equation and replicator dynamics: new issues in classification". Biological Cybernetics. 72 (5). Springer Science and Business Media LLC: 447–453. doi:10.1007/bf00201420. ISSN 0340-1200. S2CID 18754189.
  • Smale, S. (1976). "On the differential equations of species in competition". Journal of Mathematical Biology. 3 (1). Springer Science and Business Media LLC: 5–7. doi:10.1007/bf00307854. ISSN 0303-6812. PMID 1022822. S2CID 33201460.
  • Hirsch, M W (1988-02-01). "Systems of differential equations which are competitive or cooperative: III. Competing species". Nonlinearity. 1 (1). IOP Publishing: 51–71. Bibcode:1988Nonli...1...51H. doi:10.1088/0951-7715/1/1/003. ISSN 0951-7715. S2CID 250848783.
  • Kondoh, M. (2003-02-28). "Foraging Adaptation and the Relationship Between Food-Web Complexity and Stability". Science. 299 (5611). American Association for the Advancement of Science (AAAS): 1388–1391. doi:10.1126/science.1079154. ISSN 0036-8075. PMID 12610303. S2CID 129162096.
  • Vano, J A; Wildenberg, J C; Anderson, M B; Noel, J K; Sprott, J C (2006-09-15). "Chaos in low-dimensional Lotka–Volterra models of competition". Nonlinearity. 19 (10). IOP Publishing: 2391–2404. Bibcode:2006Nonli..19.2391V. doi:10.1088/0951-7715/19/10/006. ISSN 0951-7715. S2CID 9417299.

worldcat.org

search.worldcat.org

  • Bomze, Immanuel M. (1983). "Lotka-Volterra equation and replicator dynamics: A two-dimensional classification". Biological Cybernetics. 48 (3). Springer Science and Business Media LLC: 201–211. doi:10.1007/bf00318088. ISSN 0340-1200. S2CID 206774680.
  • Bomze, Immanuel M. (1995). "Lotka-Volterra equation and replicator dynamics: new issues in classification". Biological Cybernetics. 72 (5). Springer Science and Business Media LLC: 447–453. doi:10.1007/bf00201420. ISSN 0340-1200. S2CID 18754189.
  • Smale, S. (1976). "On the differential equations of species in competition". Journal of Mathematical Biology. 3 (1). Springer Science and Business Media LLC: 5–7. doi:10.1007/bf00307854. ISSN 0303-6812. PMID 1022822. S2CID 33201460.
  • Hirsch, Morris W. (1985). "Systems of Differential Equations that are Competitive or Cooperative II: Convergence Almost Everywhere". SIAM Journal on Mathematical Analysis. 16 (3). Society for Industrial & Applied Mathematics (SIAM): 423–439. doi:10.1137/0516030. ISSN 0036-1410.
  • Hirsch, M W (1988-02-01). "Systems of differential equations which are competitive or cooperative: III. Competing species". Nonlinearity. 1 (1). IOP Publishing: 51–71. Bibcode:1988Nonli...1...51H. doi:10.1088/0951-7715/1/1/003. ISSN 0951-7715. S2CID 250848783.
  • Hirsch, Morris W. (1990). "Systems of Differential Equations That are Competitive or Cooperative. IV: Structural Stability in Three-Dimensional Systems". SIAM Journal on Mathematical Analysis. 21 (5). Society for Industrial & Applied Mathematics (SIAM): 1225–1234. doi:10.1137/0521067. ISSN 0036-1410.
  • Kondoh, M. (2003-02-28). "Foraging Adaptation and the Relationship Between Food-Web Complexity and Stability". Science. 299 (5611). American Association for the Advancement of Science (AAAS): 1388–1391. doi:10.1126/science.1079154. ISSN 0036-8075. PMID 12610303. S2CID 129162096.
  • Ackland, G. J.; Gallagher, I. D. (2004-10-08). "Stabilization of Large Generalized Lotka-Volterra Foodwebs By Evolutionary Feedback". Physical Review Letters. 93 (15). American Physical Society (APS): 158701. Bibcode:2004PhRvL..93o8701A. doi:10.1103/physrevlett.93.158701. ISSN 0031-9007. PMID 15524949.
  • Vano, J A; Wildenberg, J C; Anderson, M B; Noel, J K; Sprott, J C (2006-09-15). "Chaos in low-dimensional Lotka–Volterra models of competition". Nonlinearity. 19 (10). IOP Publishing: 2391–2404. Bibcode:2006Nonli..19.2391V. doi:10.1088/0951-7715/19/10/006. ISSN 0951-7715. S2CID 9417299.
  • Roques, Lionel; Chekroun, Mickaël D. (2011). "Probing chaos and biodiversity in a simple competition model" (PDF). Ecological Complexity. 8 (1). Elsevier BV: 98–104. doi:10.1016/j.ecocom.2010.08.004. ISSN 1476-945X.
  • Nese, Jon M. (1989). "Quantifying local predictability in phase space". Physica D: Nonlinear Phenomena. 35 (1–2). Elsevier BV: 237–250. Bibcode:1989PhyD...35..237N. doi:10.1016/0167-2789(89)90105-x. ISSN 0167-2789.
  • Sprott, J.C.; Wildenberg, J.C.; Azizi, Yousef (2005). "A simple spatiotemporal chaotic Lotka–Volterra model". Chaos, Solitons & Fractals. 26 (4). Elsevier BV: 1035–1043. Bibcode:2005CSF....26.1035S. doi:10.1016/j.chaos.2005.02.015. ISSN 0960-0779.
  • Wildenberg, J.C.; Vano, J.A.; Sprott, J.C. (2006). "Complex spatiotemporal dynamics in Lotka–Volterra ring systems". Ecological Complexity. 3 (2). Elsevier BV: 140–147. doi:10.1016/j.ecocom.2005.12.001. ISSN 1476-945X.