Donoho, David L. (2006). "For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution". Communications on Pure and Applied Mathematics. 59 (6): 797–829. doi:10.1002/cpa.20132. S2CID8510060.
Goldluecke, B.; Strekalovskiy, E.; Cremers, D.; Siims, P.-T. A. I. (2012). "The natural vectorial total variation which arises from geometric measure theory". SIAM J. Imaging Sci. 5 (2): 537–563. CiteSeerX10.1.1.364.3997. doi:10.1137/110823766.
Zhang, Y. (2015). "Exponential Wavelet Iterative Shrinkage Thresholding Algorithm for Compressed Sensing Magnetic Resonance Imaging". Information Sciences. 322: 115–132. doi:10.1016/j.ins.2015.06.017.
Zhang, Y.; Wang, S. (2015). "Exponential Wavelet Iterative Shrinkage Thresholding Algorithm with Random Shift for Compressed Sensing Magnetic Resonance Imaging". IEEJ Transactions on Electrical and Electronic Engineering. 10 (1): 116–117. doi:10.1002/tee.22059. S2CID109854375.
Goldluecke, B.; Strekalovskiy, E.; Cremers, D.; Siims, P.-T. A. I. (2012). "The natural vectorial total variation which arises from geometric measure theory". SIAM J. Imaging Sci. 5 (2): 537–563. CiteSeerX10.1.1.364.3997. doi:10.1137/110823766.
Donoho, David L. (2006). "For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution". Communications on Pure and Applied Mathematics. 59 (6): 797–829. doi:10.1002/cpa.20132. S2CID8510060.
Zhang, Y.; Wang, S. (2015). "Exponential Wavelet Iterative Shrinkage Thresholding Algorithm with Random Shift for Compressed Sensing Magnetic Resonance Imaging". IEEJ Transactions on Electrical and Electronic Engineering. 10 (1): 116–117. doi:10.1002/tee.22059. S2CID109854375.