Confluent hypergeometric function (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Confluent hypergeometric function" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
451st place
277th place
18th place
17th place
3,413th place
2,445th place
222nd place
297th place
26th place
20th place

ams.org

mathscinet.ams.org

  • Campos, L.M.B.C. (2001). "On Some Solutions of the Extended Confluent Hypergeometric Differential Equation". Journal of Computational and Applied Mathematics. 137 (1): 177–200. Bibcode:2001JCoAM.137..177C. doi:10.1016/s0377-0427(00)00706-8. MR 1865885.
  • Frank, Evelyn (1956). "A new class of continued fraction expansions for the ratios of hypergeometric functions". Trans. Am. Math. Soc. 81 (2): 453–476. doi:10.1090/S0002-9947-1956-0076937-0. JSTOR 1992927. MR 0076937.

doi.org

  • Campos, L.M.B.C. (2001). "On Some Solutions of the Extended Confluent Hypergeometric Differential Equation". Journal of Computational and Applied Mathematics. 137 (1): 177–200. Bibcode:2001JCoAM.137..177C. doi:10.1016/s0377-0427(00)00706-8. MR 1865885.
  • Frank, Evelyn (1956). "A new class of continued fraction expansions for the ratios of hypergeometric functions". Trans. Am. Math. Soc. 81 (2): 453–476. doi:10.1090/S0002-9947-1956-0076937-0. JSTOR 1992927. MR 0076937.

harvard.edu

ui.adsabs.harvard.edu

  • Campos, L.M.B.C. (2001). "On Some Solutions of the Extended Confluent Hypergeometric Differential Equation". Journal of Computational and Applied Mathematics. 137 (1): 177–200. Bibcode:2001JCoAM.137..177C. doi:10.1016/s0377-0427(00)00706-8. MR 1865885.

jstor.org

sfu.ca

people.math.sfu.ca

  • This is derived from Abramowitz and Stegun (see reference below), page 508, where a full asymptotic series is given. They switch the sign of the exponent in exp(iπa) in the right half-plane but this is immaterial, as the term is negligible there or else a is an integer and the sign doesn't matter.

wiley.com