Consistency (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Consistency" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
451st place
277th place
1,923rd place
1,068th place

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

  • Carnielli, Walter; Coniglio, Marcelo Esteban (2016). Paraconsistent logic: consistency, contradiction and negation. Logic, Epistemology, and the Unity of Science. Vol. 40. Cham: Springer. doi:10.1007/978-3-319-33205-5. ISBN 978-3-319-33203-1. MR 3822731. Zbl 1355.03001.

doi.org (Global: 2nd place; English: 2nd place)

  • Tarski 1946 states it this way: "A deductive theory is called consistent or non-contradictory if no two asserted statements of this theory contradict each other, or in other words, if of any two contradictory sentences … at least one cannot be proved," (p. 135) where Tarski defines contradictory as follows: "With the help of the word not one forms the negation of any sentence; two sentences, of which the first is a negation of the second, are called contradictory sentences" (p. 20). This definition requires a notion of "proof". Gödel 1931 defines the notion this way: "The class of provable formulas is defined to be the smallest class of formulas that contains the axioms and is closed under the relation "immediate consequence", i.e., formula c of a and b is defined as an immediate consequence in terms of modus ponens or substitution; cf Gödel 1931, van Heijenoort 1967, p. 601. Tarski defines "proof" informally as "statements follow one another in a definite order according to certain principles … and accompanied by considerations intended to establish their validity [true conclusion] for all true premises – Reichenbach 1947, p. 68]" cf Tarski 1946, p. 3. Kleene 1952 defines the notion with respect to either an induction or as to paraphrase) a finite sequence of formulas such that each formula in the sequence is either an axiom or an "immediate consequence" of the preceding formulas; "A proof is said to be a proof of its last formula, and this formula is said to be (formally) provable or be a (formal) theorem" cf Kleene 1952, p. 83. Tarski, Alfred (1946). Introduction to Logic and to the Methodology of Deductive Sciences (Second ed.). New York: Dover. ISBN 0-486-28462-X. {{cite book}}: ISBN / Date incompatibility (help) Gödel, Kurt (1 December 1931). "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I". Monatshefte für Mathematik und Physik. 38 (1): 173–198. doi:10.1007/BF01700692. Gödel, Kurt (1 December 1931). "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I". Monatshefte für Mathematik und Physik. 38 (1): 173–198. doi:10.1007/BF01700692. van Heijenoort, Jean (1967). From Frege to Gödel: A Source Book in Mathematical Logic. Cambridge, MA: Harvard University Press. ISBN 0-674-32449-8. (pbk.) Reichenbach, Hans (1947). Elements of Symbolic Logic. New York: Dover. ISBN 0-486-24004-5. {{cite book}}: ISBN / Date incompatibility (help) Tarski, Alfred (1946). Introduction to Logic and to the Methodology of Deductive Sciences (Second ed.). New York: Dover. ISBN 0-486-28462-X. {{cite book}}: ISBN / Date incompatibility (help) Kleene, Stephen (1952). Introduction to Metamathematics. New York: North-Holland. ISBN 0-7204-2103-9. {{cite book}}: ISBN / Date incompatibility (help) 10th impression 1991. Kleene, Stephen (1952). Introduction to Metamathematics. New York: North-Holland. ISBN 0-7204-2103-9. {{cite book}}: ISBN / Date incompatibility (help) 10th impression 1991.
  • Carnielli, Walter; Coniglio, Marcelo Esteban (2016). Paraconsistent logic: consistency, contradiction and negation. Logic, Epistemology, and the Unity of Science. Vol. 40. Cham: Springer. doi:10.1007/978-3-319-33205-5. ISBN 978-3-319-33203-1. MR 3822731. Zbl 1355.03001.

zbmath.org (Global: 1,923rd place; English: 1,068th place)

  • Carnielli, Walter; Coniglio, Marcelo Esteban (2016). Paraconsistent logic: consistency, contradiction and negation. Logic, Epistemology, and the Unity of Science. Vol. 40. Cham: Springer. doi:10.1007/978-3-319-33205-5. ISBN 978-3-319-33203-1. MR 3822731. Zbl 1355.03001.