Constant-mean-curvature surface (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Constant-mean-curvature surface" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
69th place
59th place
3,707th place
2,409th place
26th place
20th place
451st place
277th place
207th place
136th place
2,446th place
1,661st place
4,012th place
4,295th place
274th place
309th place
3,087th place
2,519th place
120th place
125th place
699th place
479th place
8,783rd place
low place
11th place
8th place
1st place
1st place
18th place
17th place
1,248th place
1,104th place
910th place
593rd place

acs.org

pubs.acs.org

ams.org

  • Nikolaos Kapouleas. Constant mean curvature surfaces in Euclidean three-space. . Bull. Amer. Math. Soc. (N.S.) 17 (1987), no.2, 318–320.
  • [5] Nikolaos Kapouleas, Christine Breiner, Stephen Kleene. Conservation laws and gluing constructions for constant mean curvature (hyper)surfaces. Notices Amer. Math. Soc. 69 (2022), no.5, 762–773.

archive-it.org

wayback.archive-it.org

  • Helmut Pottmann, Yang Liu, Johannes Wallner, Alexander Bobenko, Wenping Wang. Geometry of Multi-layer Freeform Structures for Architecture. ACM Transactions on Graphics – Proceedings of ACM SIGGRAPH 2007 Volume 26 Issue 3, July 2007 Article No. 65 [9]

arxiv.org

  • Rafe Mazzeo, Daniel Pollack, Gluing and Moduli for Noncompact Geometric Problems. 1996 arXiv:dg-ga/9601008 [3]
  • Karsten Grosse-Brauckmann, Robert B. Kusner, John M. Sullivan. Coplanar constant mean curvature surfaces. Comm. Anal. Geom. 15:5 (2008) pp. 985–1023. ArXiv math.DG/0509210. [4]
  • Shoichi Fujimori, Shimpei Kobayashi and Wayne Rossman, Loop Group Methods for Constant Mean Curvature Surfaces. Rokko Lectures in Mathematics 2005 arXiv:math/0602570
  • Karsten Grosse-Brauckmann, Robert B Kusner, John M Sullivan. Triunduloids: Embedded constant mean curvature surfaces with three ends and genus zero. J. Reine Angew. Math., 564, pp. 35–61 2001 arXiv:math/0102183v2 [7]

doi.org

  • Wente, Henry C. (1986), "Counterexample to a conjecture of H. Hopf.", Pacific Journal of Mathematics, 121: 193–243, doi:10.2140/pjm.1986.121.193
  • Hitchin, Nigel (1990). "Harmonic maps from a 2-torus to the 3-sphere". Journal of Differential Geometry. 31 (3): 627–710. doi:10.4310/jdg/1214444631.
  • Pinkall, U.; Sterling, I. (1989). "On the classification of constant mean curvature tori". Annals of Mathematics. Second. 130 (2): 407–451. doi:10.2307/1971425. JSTOR 1971425.
  • Bobenko, A. I. (1991). "Surfaces of constant mean curvature and integrable equations". Russian Math. Surveys. 46 (4): 1–45. doi:10.1070/RM1991v046n04ABEH002826. S2CID 250883973.
  • Meinhard Wohlgemuth; Nataliya Yufa; James Hoffman; Edwin L. Thomas (2001). "Triply Periodic Bicontinuous Cubic Microdomain Morphologies by Symmetries" (PDF). Macromolecules. 34 (17): 6083–6089. Bibcode:2001MaMol..34.6083W. doi:10.1021/ma0019499. Archived from the original on 2015-06-23.{{cite journal}}: CS1 maint: unfit URL (link)

harvard.edu

ui.adsabs.harvard.edu

jhu.edu

math.jhu.edu

jstor.org

lu.se

matematik.lu.se

  • Carl Johan Lejdfors, Surfaces of Constant Mean Curvature. Master’s thesis Lund University, Centre for Mathematical Sciences Mathematics 2003:E11 [2]

mathnet.ru

projecteuclid.org

  • Wente, Henry C. (1986), "Counterexample to a conjecture of H. Hopf.", Pacific Journal of Mathematics, 121: 193–243, doi:10.2140/pjm.1986.121.193
  • Nikolaos Kapouleas. Compact constant mean curvature surfaces in Euclidean three-space J. Differential Geom. 33 (1991), no. 3, 683-715.
  • Meeks W. H., The topology and geometry of embedded surfaces of constant mean curvature, J. Diff. Geom. 27 (1988) 539–552.

psu.edu

citeseerx.ist.psu.edu

  • Smith, J. 2003. Three Applications of Optimization in Computer Graphics. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA [8]
  • Hao Pan, Yi-King Choi, Yang Liu, Wenchao Hu, Qiang Du, Konrad Polthier, Caiming Zhang, Wenping Wang, Robust modeling of constant mean curvature surfaces. ACM Transactions on Graphics – SIGGRAPH 2012 Conference Proceedings. Volume 31 Issue 4, July 2012 Article No. 85

researchgate.net

semanticscholar.org

api.semanticscholar.org

springer.com

link.springer.com

uiuc.edu

torus.math.uiuc.edu

  • John M. Sullivan, A Complete Family of CMC Surfaces. In Integrable Systems, Geometry and Visualization, 2005, pp 237–245. [6]

utah.edu

math.utah.edu

  • Nick Korevaar, Jesse Ratzkin, Nat Smale, Andrejs Treibergs, A survey of the classical theory of constant mean curvature surfaces in R3, 2002 [1]

web.archive.org