Cramér–Wold theorem (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Cramér–Wold theorem" in English language version.

refsWebsite
Global rank English rank
5th place
5th place
2nd place
2nd place
3,707th place
2,409th place
610th place
704th place
274th place
309th place
low place
low place
low place
low place
222nd place
297th place

doi.org

  • Samanta, M. (1989-04-01). "Non-parametric estimation of conditional quantiles". Statistics & Probability Letters. 7 (5): 407–412. doi:10.1016/0167-7152(89)90095-3. ISSN 0167-7152.
  • Cuesta-Albertos, Juan Antonio; Fraiman, Ricardo; Ransford, Thomas (2007). "A Sharp Form of the Cramér–Wold Theorem". Journal of Theoretical Probability. 20 (2): 201–209. doi:10.1007/s10959-007-0060-7. ISSN 0894-9840.
  • Berger, David; Lindner, Alexander (2022-05-01). "A Cramér–Wold device for infinite divisibility of Zd-valued distributions". Bernoulli. 28 (2). doi:10.3150/21-BEJ1386. ISSN 1350-7265.
  • Bélisle, Claude; Massé, Jean-Claude; Ransford, Thomas (1997). "When is a probability measure determined by infinitely many projections?". The Annals of Probability. 25 (2). doi:10.1214/aop/1024404418. ISSN 0091-1798.
  • Cramér, H.; Wold, H. (1936). "Some Theorems on Distribution Functions". Journal of the London Mathematical Society. s1-11 (4): 290–294. doi:10.1112/jlms/s1-11.4.290.

elsevier.com

linkinghub.elsevier.com

  • Samanta, M. (1989-04-01). "Non-parametric estimation of conditional quantiles". Statistics & Probability Letters. 7 (5): 407–412. doi:10.1016/0167-7152(89)90095-3. ISSN 0167-7152.

neurips.cc

proceedings.neurips.cc

planetmath.org

projecteuclid.org

springer.com

link.springer.com

wiley.com

doi.wiley.com

worldcat.org

search.worldcat.org

  • Samanta, M. (1989-04-01). "Non-parametric estimation of conditional quantiles". Statistics & Probability Letters. 7 (5): 407–412. doi:10.1016/0167-7152(89)90095-3. ISSN 0167-7152.
  • Cuesta-Albertos, Juan Antonio; Fraiman, Ricardo; Ransford, Thomas (2007). "A Sharp Form of the Cramér–Wold Theorem". Journal of Theoretical Probability. 20 (2): 201–209. doi:10.1007/s10959-007-0060-7. ISSN 0894-9840.
  • Berger, David; Lindner, Alexander (2022-05-01). "A Cramér–Wold device for infinite divisibility of Zd-valued distributions". Bernoulli. 28 (2). doi:10.3150/21-BEJ1386. ISSN 1350-7265.
  • Bélisle, Claude; Massé, Jean-Claude; Ransford, Thomas (1997). "When is a probability measure determined by infinitely many projections?". The Annals of Probability. 25 (2). doi:10.1214/aop/1024404418. ISSN 0091-1798.
  • Kallenberg, Olav (2002). Foundations of modern probability (2nd ed.). New York: Springer. ISBN 0-387-94957-7. OCLC 46937587.

worldcat.org