Cyclic quadrilateral (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Cyclic quadrilateral" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
3rd place
3rd place
1st place
1st place
6,442nd place
4,551st place
6th place
6th place
5th place
5th place
451st place
277th place
26th place
20th place
102nd place
76th place
11th place
8th place
6,602nd place
6,109th place
low place
low place
low place
low place
low place
low place
low place
low place
low place
low place
513th place
537th place

ams.org

mathscinet.ams.org

archive.org

books.google.com

  • Usiskin, Zalman; Griffin, Jennifer; Witonsky, David; Willmore, Edwin (2008), "10. Cyclic quadrilaterals", The Classification of Quadrilaterals: A Study of Definition, Research in mathematics education, IAP, pp. 63–65, ISBN 978-1-59311-695-8
  • Andreescu, Titu; Enescu, Bogdan (2004), "2.3 Cyclic quads", Mathematical Olympiad Treasures, Springer, pp. 44–46, 50, ISBN 978-0-8176-4305-8, MR 2025063
  • Durell, C. V.; Robson, A. (2003) [1930], Advanced Trigonometry, Courier Dover, ISBN 978-0-486-43229-8
  • Coxeter, Harold Scott MacDonald; Greitzer, Samuel L. (1967), "3.2 Cyclic Quadrangles; Brahmagupta's formula", Geometry Revisited, Mathematical Association of America, pp. 57, 60, ISBN 978-0-88385-619-2
  • Alsina, Claudi; Nelsen, Roger (2009), "4.3 Cyclic, tangential, and bicentric quadrilaterals", When Less is More: Visualizing Basic Inequalities, Mathematical Association of America, p. 64, ISBN 978-0-88385-342-9
  • Honsberger, Ross (1995), "4.2 Cyclic quadrilaterals", Episodes in Nineteenth and Twentieth Century Euclidean Geometry, New Mathematical Library, vol. 37, Cambridge University Press, pp. 35–39, ISBN 978-0-88385-639-0
  • Posamentier, Alfred S.; Salkind, Charles T. (1970), "Solutions: 4-23 Prove that the sum of the squares of the measures of the segments made by two perpendicular chords is equal to the square of the measure of the diameter of the given circle.", Challenging Problems in Geometry (2nd ed.), Courier Dover, pp. 104–5, ISBN 978-0-486-69154-1

clarku.edu

aleph0.clarku.edu

cut-the-knot.org

  • A. Bogomolny, An Identity in (Cyclic) Quadrilaterals, Interactive Mathematics Miscellany and Puzzles, [2], Accessed 18 March 2014.

doi.org

fau.edu

forumgeom.fau.edu

handle.net

hdl.handle.net

ijgeometry.com

imomath.com

imsa.edu

students.imsa.edu

jstor.org

  • Peter, Thomas (September 2003), "Maximizing the area of a quadrilateral", The College Mathematics Journal, 34 (4): 315–6, doi:10.2307/3595770, JSTOR 3595770
  • Hoehn, Larry (March 2000), "Circumradius of a cyclic quadrilateral", Mathematical Gazette, 84 (499): 69–70, doi:10.2307/3621477, JSTOR 3621477

semanticscholar.org

api.semanticscholar.org

  • Fraivert, David; Sigler, Avi; Stupel, Moshe (2020), "Necessary and sufficient properties for a cyclic quadrilateral", International Journal of Mathematical Education in Science and Technology, 51 (6): 913–938, doi:10.1080/0020739X.2019.1683772, S2CID 209930435

upit.ro

matinf.upit.ro

web.archive.org

wolfram.com

mathworld.wolfram.com

worldcat.org

search.worldcat.org

  • Bradley, Christopher J. (2007), The Algebra of Geometry: Cartesian, Areal and Projective Co-Ordinates, Highperception, p. 179, ISBN 978-1906338008, OCLC 213434422
  • Siddons, A. W.; Hughes, R. T. (1929), Trigonometry, Cambridge University Press, p. 202, OCLC 429528983
  • Altshiller-Court, Nathan (2007) [1952], College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (2nd ed.), Courier Dover, pp. 131, 137–8, ISBN 978-0-486-45805-2, OCLC 78063045