Denjoy–Riesz theorem (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Denjoy–Riesz theorem" in English language version.

refsWebsite
Global rank English rank
451st place
277th place
2nd place
2nd place
3rd place
3rd place
26th place
20th place
11th place
8th place

ams.org

mathscinet.ams.org

  • Krupka, Demeter (2015), Introduction to global variational geometry, Atlantis Studies in Variational Geometry, vol. 1, Atlantis Press, Paris, p. 158, doi:10.2991/978-94-6239-073-7, ISBN 978-94-6239-072-0, MR 3290001.
  • Kuratowski, K. (1968), Topology. Vol. II, New edition, revised and augmented. Translated from the French by A. Kirkor, Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, p. 539, ISBN 9781483271798, MR 0259835.
  • Moore, R. L.; Kline, J. R. (1919), "On the most general plane closed point-set through which it is possible to pass a simple continuous arc", Annals of Mathematics, Second Series, 20 (3): 218–223, doi:10.2307/1967872, JSTOR 1967872, MR 1502556.
  • Balcerzak, M.; Kharazishvili, A. (1999), "On uncountable unions and intersections of measurable sets", Georgian Mathematical Journal, 6 (3): 201–212, doi:10.1023/A:1022102312024 (inactive 9 April 2025), MR 1679442, S2CID 1486611{{citation}}: CS1 maint: DOI inactive as of April 2025 (link). For an earlier construction of a positive-area Jordan curve, not using this theorem, see Osgood, William F. (1903), "A Jordan curve of positive area", Transactions of the American Mathematical Society, 4 (1): 107–112, doi:10.2307/1986455, JSTOR 1986455.

books.google.com

  • Krupka, Demeter (2015), Introduction to global variational geometry, Atlantis Studies in Variational Geometry, vol. 1, Atlantis Press, Paris, p. 158, doi:10.2991/978-94-6239-073-7, ISBN 978-94-6239-072-0, MR 3290001.
  • Kuratowski, K. (1968), Topology. Vol. II, New edition, revised and augmented. Translated from the French by A. Kirkor, Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, p. 539, ISBN 9781483271798, MR 0259835.

doi.org

  • Krupka, Demeter (2015), Introduction to global variational geometry, Atlantis Studies in Variational Geometry, vol. 1, Atlantis Press, Paris, p. 158, doi:10.2991/978-94-6239-073-7, ISBN 978-94-6239-072-0, MR 3290001.
  • Moore, R. L.; Kline, J. R. (1919), "On the most general plane closed point-set through which it is possible to pass a simple continuous arc", Annals of Mathematics, Second Series, 20 (3): 218–223, doi:10.2307/1967872, JSTOR 1967872, MR 1502556.
  • Balcerzak, M.; Kharazishvili, A. (1999), "On uncountable unions and intersections of measurable sets", Georgian Mathematical Journal, 6 (3): 201–212, doi:10.1023/A:1022102312024 (inactive 9 April 2025), MR 1679442, S2CID 1486611{{citation}}: CS1 maint: DOI inactive as of April 2025 (link). For an earlier construction of a positive-area Jordan curve, not using this theorem, see Osgood, William F. (1903), "A Jordan curve of positive area", Transactions of the American Mathematical Society, 4 (1): 107–112, doi:10.2307/1986455, JSTOR 1986455.

jstor.org

semanticscholar.org

api.semanticscholar.org