Analysis of information sources in references of the Wikipedia article "Deployment of COVID-19 vaccines" in English language version.
CEPI estimates that developing up to three vaccines in the next 12–18 months will require an investment of at least US$2 billion. This estimate includes Phase 1 clinical trials of eight vaccine candidates, progression of up to six candidates through Phase 2 and 3 trials, completion of regulatory and quality requirements for at least three vaccines, and enhancing global manufacturing capacity for three vaccines.
The IATA estimated that 8,000 747 cargo planes, at minimum, would be needed to transport a single dose of the vaccine worldwide, but more equipment could be required as administering the vaccine might mean several doses. Vaccines would also have to be stored at a temperature range between two and eight degrees Celsius, which could rule out the use of some types of planes.
CEPI estimates that developing up to three vaccines in the next 12–18 months will require an investment of at least US$2 billion. This estimate includes Phase 1 clinical trials of eight vaccine candidates, progression of up to six candidates through Phase 2 and 3 trials, completion of regulatory and quality requirements for at least three vaccines, and enhancing global manufacturing capacity for three vaccines.
CEPI estimates that developing up to three vaccines in the next 12–18 months will require an investment of at least US$2 billion. This estimate includes Phase 1 clinical trials of eight vaccine candidates, progression of up to six candidates through Phase 2 and 3 trials, completion of regulatory and quality requirements for at least three vaccines, and enhancing global manufacturing capacity for three vaccines.
Delivering a new vaccine for COVID-19 worldwide will be one of the greatest challenges faced by modern pharma. The difficulties are intensified by pre-existing shortcomings in the supply chain.
It is vital that we evaluate as many vaccines as possible as we cannot predict how many will turn out to be viable. To increase the chances of success (given the high level of attrition during vaccine development), we must test all candidate vaccines until they fail. The World Health Organization (WHO) is working to ensure that all of them have the chance of being tested at the initial stage of development. The results for the efficacy of each vaccine are expected within three to six months and this evidence, combined with data on safety, will inform decisions about whether it can be used on a wider scale.
Delivering a new vaccine for COVID-19 worldwide will be one of the greatest challenges faced by modern pharma. The difficulties are intensified by pre-existing shortcomings in the supply chain.
It is vital that we evaluate as many vaccines as possible as we cannot predict how many will turn out to be viable. To increase the chances of success (given the high level of attrition during vaccine development), we must test all candidate vaccines until they fail. The World Health Organization (WHO) is working to ensure that all of them have the chance of being tested at the initial stage of development. The results for the efficacy of each vaccine are expected within three to six months and this evidence, combined with data on safety, will inform decisions about whether it can be used on a wider scale.