Differential geometry of surfaces (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Differential geometry of surfaces" in English language version.

refsWebsite
Global rank English rank
3,707th place
2,409th place
2nd place
2nd place
613th place
456th place
11th place
8th place
26th place
20th place
2,242nd place
1,513th place
451st place
277th place
1,923rd place
1,068th place
69th place
59th place
459th place
360th place
2,594th place
2,546th place
5th place
5th place
621st place
380th place

ams.org

mathscinet.ams.org

arxiv.org

dartmouth.edu

math.dartmouth.edu

doi.org

  • This follows by an argument involving a theorem of Sacks & Uhlenbeck (1981) on removable singularities of harmonic maps of finite energy. Sacks, J.; Uhlenbeck, Karen (1981), "The existence of minimal immersions of 2-spheres", Ann. of Math., 112 (1): 1–24, doi:10.2307/1971131, JSTOR 1971131
  • Singer & Thorpe 1967; Garsia, Adriano M. (1961), "An imbedding of closed Riemann surfaces in Euclidean space", Comment. Math. Helv., 35: 93–110, doi:10.1007/BF02567009, S2CID 120653575 Singer, Isadore M.; Thorpe, John A. (1967), Lecture Notes on Elementary Topology and Geometry, Springer-Verlag, ISBN 978-0-387-90202-9
  • Chow 1991 Chow, B. (1991), "The Ricci flow on a 2-sphere", J. Diff. Geom., 33 (2): 325–334, doi:10.4310/jdg/1214446319
  • Chen, Lu & Tian (2006) pointed out and corrected a missing step in the approach of Hamilton and Chow; see also Andrews & Bryan (2010). Chen, Xiuxiong; Lu, Peng; Tian, Gang (2006), "A note on uniformization of Riemann surfaces by Ricci flow", Proc. AMS, 134 (11): 3391–3393, doi:10.1090/S0002-9939-06-08360-2 Andrews, Ben; Bryan, Paul (2010), "Curvature bounds by isoperimetric comparison for normalized Ricci flow on the two-sphere", Calc. Var. Partial Differential Equations, 39 (3–4): 419–428, arXiv:0908.3606, doi:10.1007/s00526-010-0315-5, S2CID 1095459
  • Levi-Civita 1917 Levi-Civita, Tullio (1917), "Nozione di parallelismo in una varietà qualunque", Rend. Circ. Mat. Palermo, 42: 173–205, doi:10.1007/BF03014898, S2CID 122088291
  • Codá Marques, Fernando; Neves, André (2014). "Min-Max theory and the Willmore conjecture". Annals of Mathematics. 179 (2): 683–782. arXiv:1202.6036. doi:10.4007/annals.2014.179.2.6. JSTOR 24522767. S2CID 50742102.

jstor.org

ox.ac.uk

people.maths.ox.ac.uk

projecteuclid.org

semanticscholar.org

api.semanticscholar.org

  • Singer & Thorpe 1967; Garsia, Adriano M. (1961), "An imbedding of closed Riemann surfaces in Euclidean space", Comment. Math. Helv., 35: 93–110, doi:10.1007/BF02567009, S2CID 120653575 Singer, Isadore M.; Thorpe, John A. (1967), Lecture Notes on Elementary Topology and Geometry, Springer-Verlag, ISBN 978-0-387-90202-9
  • Chen, Lu & Tian (2006) pointed out and corrected a missing step in the approach of Hamilton and Chow; see also Andrews & Bryan (2010). Chen, Xiuxiong; Lu, Peng; Tian, Gang (2006), "A note on uniformization of Riemann surfaces by Ricci flow", Proc. AMS, 134 (11): 3391–3393, doi:10.1090/S0002-9939-06-08360-2 Andrews, Ben; Bryan, Paul (2010), "Curvature bounds by isoperimetric comparison for normalized Ricci flow on the two-sphere", Calc. Var. Partial Differential Equations, 39 (3–4): 419–428, arXiv:0908.3606, doi:10.1007/s00526-010-0315-5, S2CID 1095459
  • Levi-Civita 1917 Levi-Civita, Tullio (1917), "Nozione di parallelismo in una varietà qualunque", Rend. Circ. Mat. Palermo, 42: 173–205, doi:10.1007/BF03014898, S2CID 122088291
  • Codá Marques, Fernando; Neves, André (2014). "Min-Max theory and the Willmore conjecture". Annals of Mathematics. 179 (2): 683–782. arXiv:1202.6036. doi:10.4007/annals.2014.179.2.6. JSTOR 24522767. S2CID 50742102.

umich.edu

quod.lib.umich.edu

uni-goettingen.de

www-gdz.sub.uni-goettingen.de

worldcat.org

search.worldcat.org

zbmath.org

zenodo.org