Docking and berthing of spacecraft (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Docking and berthing of spacecraft" in English language version.

refsWebsite
Global rank English rank
1st place
1st place
75th place
83rd place
2,930th place
2,204th place
14th place
14th place
2,056th place
1,541st place
2nd place
2nd place
11th place
8th place
1,876th place
1,225th place
2,428th place
1,659th place
6,023rd place
4,666th place
7,955th place
low place
6,873rd place
4,881st place
low place
low place
low place
low place
low place
9,923rd place
low place
low place
low place
low place
3rd place
3rd place
low place
low place
low place
low place
4,826th place
8,182nd place
low place
low place
low place
low place
low place
low place
1,181st place
736th place
low place
low place
low place
low place
305th place
264th place

archive.today

  • "China's First Space Station Module Readies for Liftoff". Space News. August 1, 2012. Archived from the original on September 17, 2012. Retrieved September 3, 2012.
  • de Selding, Peter B. (March 14, 2011). "Intelsat Signs Up for Satellite Refueling Service". Space News. Archived from the original on May 24, 2012. Retrieved March 15, 2011. if the MDA spacecraft performed as planned, Intelsat would pay a total of some $200 million to MDA. This assumed that four or five satellites would be given around 200 kilograms each of fuel.
  • de Selding, Peter B. (March 18, 2011). "Intelsat Signs Up for MDA's Satellite Refueling Service". Space News. Archived from the original on March 21, 2012. Retrieved March 20, 2011. more than 40 different types of fueling systems ... SIS will be carrying enough tools to open 75 percent of the fueling systems aboard satellites now in geostationary orbit. ... MDA will launch the SIS servicer, which will rendezvous and dock with the Intelsat satellite, attaching itself to the ring around the satellite's apogee-boost motor. With ground teams governing the movements, the SIS robotic arm will reach through the nozzle of the apogee motor to find and unscrew the satellite's fuel cap. The SIS vehicle will reclose the fuel cap after delivering the agreed amount of propellant and then head to its next mission. ... Key to the business model is MDA's ability to launch replacement fuel canisters that would be grappled by SIS and used to refuel dozens of satellites over a period of years. These canisters would be much lighter than the SIS vehicle and thus much less expensive to launch.

astronautix.com

aviationweek.com

  • Morring, Frank Jr. (March 22, 2011). "An End to Space Trash?". Aviation Week. Retrieved March 21, 2011. ViviSat, a new 50-50 joint venture of U.S. Space and ATK, is marketing a satellite-refueling spacecraft that connects to a target spacecraft using the same probe-in-the-kick-motor approach as MDA, but does not transfer its fuel. Instead, the vehicle becomes a new fuel tank, using its own thrusters to supply attitude control for the target. ... [the ViviSat] concept is not as far along as MDA. ... In addition to extending the life of an out-of-fuel satellite, the company could also rescue fueled spacecraft like AEHF-1 by docking with it in its low orbit, using its own motor and fuel to place it in the right orbit, and then moving to another target.

books.google.com

  • Bart Hendrickx; Bert Vis (2007). Energiya-Buran: The Soviet Space Shuttle. Chichester, UK: Praxis Publishing Ltd. pp. 379–381. ISBN 978-0-387-69848-9. For space station missions Buran would have carried a Docking Module (SM) in the forward part of the payload bay. It consisted of a spherical section (2.55 m in diameter) topped with a cylindrical tunnel (2.2 m in diameter) with an APAS-89 androgynous docking port, a modified version of the APAS-75 system developed by NPO Energiya for the 1975 Apollo-Soyuz Test Project (Page 141). The plan was for the orbiter to be launched uncrewed and fly to the Mir space station, where it would dock with the axial APAS-89 docking port of the Kristall module (Page 246). In the late 1980s NPO Energiya was ordered to build three Soyuz spacecraft (serial numbers 101, 102, 103) with APAS-89 docking ports (Page 246). Soyuz craft nr. 101 was eventually launched as Soyuz TM-16 on January 1993, carrying another resident crew (Gennadiy Manakov and Aleksandr Poleshchuk) to Mir space station. Equipped with an APAS-89 docking port, it was the only Soyuz vehicle to ever docking with the Kristall module. Soyuz "rescue" vehicle nr. 102 and 103, which had only been partially assembled, were modified as ordinary Soyuz TM spacecraft with standard probe docking mechanisms and were given new serial numbers (Page 249). In July 1992 NASA initiated the development of the Orbiter Docking System (ODS) to support Shuttle flights to Mir. Mounted in the forward end of the payload bay, the ODS consists of an external airlock, a supporting truss structure, and an APAS docking port. While the first two elements were built by Rockwell, the APAS was manufactured by RKK Energiya. Although Energiya's internal designator for the Shuttle APAS is APAS-95, it is essentially the same as Buran's APAS-89. While the ODS was slightly modified for Shuttle missions to ISS, APAS remained unchanged (Page 380).

cambridge.org

journals.cambridge.org

canadanewswire.ca

  • "Intelsat Picks MacDonald, Dettwiler and Associates Ltd. for Satellite Servicing". press release. CNW Group. Archived from the original on May 12, 2011. Retrieved March 15, 2011. MDA planned to launch its Space Infrastructure Servicing ("SIS") vehicle into near geosynchronous orbit, where it would service commercial and government satellites in need of additional fuel, re-positioning or other maintenance. The first refueling mission was to be available 3.5 years following the commencement of the build phase. ... The services provided by MDA to Intelsat under this agreement are valued at more than US$280 million.

cntv.cn

english.cntv.cn

congrex.nl

doi.org

everyspec.com

internationaldockingstandard.com

maas.museum

collection.maas.museum

nasa.gov

nasa.gov

ntrs.nasa.gov

  • John Cook; Valery Aksamentov; Thomas Hoffman; Wes Bruner (January 1, 2011). "ISS Interface Mechanisms and their Heritage" (PDF). Houston, Texas: Boeing. Retrieved March 31, 2015. Docking is when one incoming spacecraft rendezvous with another spacecraft and flies a controlled collision trajectory in such a manner so as to align and mesh the interface mechanisms. The spacecraft docking mechanisms typically enter what is called soft capture, followed by a load attenuation phase, and then the hard docked position which establishes an air-tight structural connection between spacecraft. Berthing, by contrast, is when an incoming spacecraft is grappled by a robotic arm and its interface mechanism is placed in close proximity of the stationary interface mechanism. Then typically there is a capture process, coarse alignment and fine alignment and then structural attachment.
  • "International Docking Standardization" (PDF). NASA. March 17, 2009. p. 15. Retrieved March 4, 2011. Docking: The joining or coming together of two separate free flying space vehicles

dockingstandard.nasa.gov

gltrs.grc.nasa.gov

  • "Advanced Docking/Berthing System – NASA Seal Workshop" (PDF). NASA. November 4, 2004. p. 15. Archived from the original (PDF) on September 22, 2011. Retrieved March 4, 2011. Berthing refers to mating operations where an inactive module/vehicle is placed into the mating interface using a Remote Manipulator System-RMS. Docking refers to mating operations where an active vehicle flies into the mating interface under its own power.

history.nasa.gov

nssdc.gsfc.nasa.gov

ston.jsc.nasa.gov

commercialcrew.nasa.gov

nasaspaceflight.com

niitp.ru

nmsu.edu

mae.nmsu.edu

orbital.com

roscosmos.ru

russianspaceweb.com

semanticscholar.org

api.semanticscholar.org

shuttlepresskit.com

  • "Space Shuttle Mission STS-74 Press Kit" (PDF). NASA. Retrieved December 28, 2011. Atlantis will carry the Russian-built Docking Module, which has multi-mission androgynous docking mechanisms at top and bottom

siamoandatisullaluna.com

  • "Apollo 9 Press Kit" (PDF). NASA. February 23, 1969. p. 43. Retrieved March 17, 2015. The tunnel is 32 inches (.81 cm) in diameter and is used for crew transfer between the CSM and LM by crewmen in either pressurized or unpressurized extravehicular mobility units (EMU).

spaceflightnow.com

spacenews.com

spacenews.com

sbv.spacenews.com

  • de Selding, Peter B. (March 18, 2011). "Intelsat Signs Up for MDA's Satellite Refueling Service". Space News. Archived from the original on March 21, 2012. Retrieved March 20, 2011. more than 40 different types of fueling systems ... SIS will be carrying enough tools to open 75 percent of the fueling systems aboard satellites now in geostationary orbit. ... MDA will launch the SIS servicer, which will rendezvous and dock with the Intelsat satellite, attaching itself to the ring around the satellite's apogee-boost motor. With ground teams governing the movements, the SIS robotic arm will reach through the nozzle of the apogee motor to find and unscrew the satellite's fuel cap. The SIS vehicle will reclose the fuel cap after delivering the agreed amount of propellant and then head to its next mission. ... Key to the business model is MDA's ability to launch replacement fuel canisters that would be grappled by SIS and used to refuel dozens of satellites over a period of years. These canisters would be much lighter than the SIS vehicle and thus much less expensive to launch.

spaceref.biz

sworld.com.au

usspacellc.com

web.archive.org