Dual polyhedron (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Dual polyhedron" in English language version.

refsWebsite
Global rank English rank
451st place
277th place
2nd place
2nd place
207th place
136th place
18th place
17th place
11th place
8th place
102nd place
76th place
3rd place
3rd place
low place
low place
942nd place
597th place

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

anu.edu.au (Global: 942nd place; English: 597th place)

cs.anu.edu.au

books.google.com (Global: 3rd place; English: 3rd place)

  • Wohlleben, Eva (2019), "Duality in Non-Polyhedral Bodies Part I: Polyliner", in Cocchiarella, Luigi (ed.), ICGG 2018 - Proceedings of the 18th International Conference on Geometry and Graphics: 40th Anniversary - Milan, Italy, August 3-7, 2018, Advances in Intelligent Systems and Computing, vol. 809, Springer, p. 485–486, doi:10.1007/978-3-319-95588-9, ISBN 978-3-319-95588-9

dmccooey.com (Global: low place; English: low place)

doi.org (Global: 2nd place; English: 2nd place)

  • Grünbaum (2003) Grünbaum, Branko (2003), "Are your polyhedra the same as my polyhedra?", in Aronov, Boris; Basu, Saugata; Pach, János; Sharir, Micha (eds.), Discrete and Computational Geometry: The Goodman–Pollack Festschrift, Algorithms and Combinatorics, vol. 25, Berlin: Springer, pp. 461–488, CiteSeerX 10.1.1.102.755, doi:10.1007/978-3-642-55566-4_21, ISBN 978-3-642-62442-1, MR 2038487.
  • See for example Grünbaum & Shephard (2013), and Gailiunas & Sharp (2005). Wenninger (1983) also discusses some issues on the way to deriving his infinite duals. Grünbaum, Branko; Shephard, G. C. (2013), "Duality of polyhedra", in Senechal, Marjorie (ed.), Shaping Space: Exploring polyhedra in nature, art, and the geometrical imagination, New York: Springer, pp. 211–216, doi:10.1007/978-0-387-92714-5_15, ISBN 978-0-387-92713-8, MR 3077226. Gailiunas, P.; Sharp, J. (2005), "Duality of polyhedra", International Journal of Mathematical Education in Science and Technology, 36 (6): 617–642, Bibcode:2005IJMES..36..617G, doi:10.1080/00207390500064049, S2CID 120818796. Wenninger, Magnus (1983), Dual Models, Cambridge University Press, ISBN 0-521-54325-8, MR 0730208.
  • Grünbaum (2007), Theorem 3.1, p. 449. Grünbaum, Branko (2007), "Graphs of polyhedra; polyhedra as graphs", Discrete Mathematics, 307 (3–5): 445–463, doi:10.1016/j.disc.2005.09.037, hdl:1773/2276, MR 2287486.
  • Wohlleben, Eva (2019), "Duality in Non-Polyhedral Bodies Part I: Polyliner", in Cocchiarella, Luigi (ed.), ICGG 2018 - Proceedings of the 18th International Conference on Geometry and Graphics: 40th Anniversary - Milan, Italy, August 3-7, 2018, Advances in Intelligent Systems and Computing, vol. 809, Springer, p. 485–486, doi:10.1007/978-3-319-95588-9, ISBN 978-3-319-95588-9

handle.net (Global: 102nd place; English: 76th place)

hdl.handle.net

harvard.edu (Global: 18th place; English: 17th place)

ui.adsabs.harvard.edu

psu.edu (Global: 207th place; English: 136th place)

citeseerx.ist.psu.edu

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org