Dubins path (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Dubins path" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
69th place
59th place
11th place
8th place
1st place
1st place
low place
7,659th place
26th place
20th place
451st place
277th place
1,031st place
879th place
low place
8,363rd place

ams.org

mathscinet.ams.org

archives-ouvertes.fr

hal.archives-ouvertes.fr

arxiv.org

doi.org

  • Reeds, J. A.; Shepp, L. A. (1990). "Optimal paths for a car that goes both forwards and backwards". Pacific Journal of Mathematics. 145 (2): 367–393. doi:10.2140/pjm.1990.145.367.
  • Dubins, L. E. (July 1957). "On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents". American Journal of Mathematics. 79 (3): 497–516. doi:10.2307/2372560. JSTOR 2372560.
  • Johnson, Harold H. (1974). "An application of the maximum principle to the geometry of plane curves". Proceedings of the American Mathematical Society. 44 (2): 432–435. doi:10.1090/S0002-9939-1974-0348631-6. MR 0348631.
  • Boissonat, J.-D.; Cerezo, A.; Leblond, K. (May 1992). "Shortest Paths of Bounded Curvature in the Plane" (PDF). Proceedings of the IEEE International Conference on Robotics and Automation. Vol. 3. Piscataway, NJ. pp. 2315–2320. doi:10.1109/ROBOT.1992.220117.
  • Ayala, José; Kirszenblat, David; Rubinstein, Hyam (2018). "A Geometric approach to shortest bounded curvature paths". Communications in Analysis and Geometry. 26 (4): 679–697. arXiv:1403.4899. doi:10.4310/CAG.2018.v26.n4.a1.
  • Ayala, José (2015). "Length minimising bounded curvature paths in homotopy classes". Topology and Its Applications. 193: 140–151. arXiv:1403.4930. doi:10.1016/j.topol.2015.06.008.
  • Bui, Xuan-Nam; Boissonnat, J.-D.; Soueres, P.; Laumond, J.-P. (May 1994). "Shortest Path Synthesis for Dubins Non-Holonomic Robot". IEEE Conference on Robotics and Automation. Vol. 1. San Diego, CA. pp. 2–7. doi:10.1109/ROBOT.1994.351019.
  • Manyam, Satyanarayana; Rathinam, Sivakumar (2016). "On Tightly Bounding the Dubins Traveling Salesman's Optimum". Journal of Dynamic Systems, Measurement, and Control. 140 (7): 071013. arXiv:1506.08752. doi:10.1115/1.4039099. S2CID 16191780.
  • Manyam, Satyanarayana G.; Rathinam, Sivakumar; Casbeer, David; Garcia, Eloy (2017). "Tightly Bounding the Shortest Dubins Paths Through a Sequence of Points". Journal of Intelligent & Robotic Systems. 88 (2–4): 495–511. doi:10.1007/s10846-016-0459-4. S2CID 30943273.

jstor.org

  • Dubins, L. E. (July 1957). "On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents". American Journal of Mathematics. 79 (3): 497–516. doi:10.2307/2372560. JSTOR 2372560.

kth.se

people.kth.se

semanticscholar.org

api.semanticscholar.org

  • Manyam, Satyanarayana; Rathinam, Sivakumar (2016). "On Tightly Bounding the Dubins Traveling Salesman's Optimum". Journal of Dynamic Systems, Measurement, and Control. 140 (7): 071013. arXiv:1506.08752. doi:10.1115/1.4039099. S2CID 16191780.
  • Manyam, Satyanarayana G.; Rathinam, Sivakumar; Casbeer, David; Garcia, Eloy (2017). "Tightly Bounding the Shortest Dubins Paths Through a Sequence of Points". Journal of Intelligent & Robotic Systems. 88 (2–4): 495–511. doi:10.1007/s10846-016-0459-4. S2CID 30943273.

universityofcalifornia.edu

web.archive.org