Dyadic rational (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Dyadic rational" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
451st place
277th place
11th place
8th place
3rd place
3rd place
69th place
59th place
26th place
20th place
18th place
17th place
1,734th place
1,312th place
low place
low place
4th place
4th place
low place
low place
1,349th place
866th place
742nd place
538th place

ams.org

mathscinet.ams.org

ams.org

arxiv.org

books.google.com

  • Rudman, Peter S. (2009), How Mathematics Happened: The First 50,000 Years, Prometheus Books, p. 148, ISBN 978-1-61592-176-8
  • Barnes, John (2016), Nice Numbers, Springer International Publishing, doi:10.1007/978-3-319-46831-0, ISBN 978-3-319-46830-3, Note that binary measures (2, 4, 8, 16) are very common indeed. This is particularly obvious with volumes.
  • Miller, Heather M.-L. (2013), "Weighty matters: evidence for unity and regional diversity from the Indus civilization weights", in Abraham, Shinu Anna; Gullapalli, Praveena; Raczek, Teresa P.; Rizvi, Uzma Z. (eds.), Connections and Complexity: New Approaches to the Archaeology of South Asia, Left Coast Press, pp. 161–177, doi:10.4324/9781315431857, ISBN 978-1-59874-686-0; see in particular p. 166
  • Resnikoff, Howard L.; Wells, Raymond O. Jr. (1998), "2.2.1: Digital computers and measurement", Wavelet Analysis: The Scalable Structure of Information, New York: Springer-Verlag, pp. 17–18, doi:10.1007/978-1-4612-0593-7, ISBN 0-387-98383-X, MR 1712468
  • Kirk, David B.; Hwu, Wen-mei W. (2013), "7.2 Representable numbers", Programming Massively Parallel Processors: A Hands-on Approach (2nd ed.), Morgan Kaufmann, pp. 155–159, ISBN 978-0-12-391418-7
  • Ko, Ker-I (1991), Complexity Theory of Real Functions, Progress in Theoretical Computer Science, Boston, Massachusetts: Birkhäuser Boston, Inc., pp. 41–43, doi:10.1007/978-1-4684-6802-1, ISBN 0-8176-3586-6, MR 1137517, S2CID 11758381
  • Libbey, Theodore (2006), "Time signature", The NPR Listener's Encyclopedia of Classical Music, Workman Publishing, p. 873, ISBN 978-0-7611-2072-8
  • Yanakiev, Ivan K. (2020), "Mathematical devices in aid of music theory, composition, and performance", in Bozhikova, Milena (ed.), Music between Ontology and Ideology, Cambridge Scholars Publishing, pp. 35–62, ISBN 978-1-5275-4758-2; see in particular p. 37.
  • Wells, David Graham (2015), Motivating Mathematics: Engaging Teachers And Engaged Students, World Scientific, pp. 32–33, ISBN 978-1-78326-755-2
  • Sabin, Malcolm (2010), Analysis and Design of Univariate Subdivision Schemes, Geometry and Computing, vol. 6, Springer, p. 51, ISBN 9783642136481

core.ac.uk

doi.org

harvard.edu

ui.adsabs.harvard.edu

illinois.edu

jeffe.cs.illinois.edu

jstor.org

nih.gov

pubmed.ncbi.nlm.nih.gov

normalesup.org

oeis.org

semanticscholar.org

api.semanticscholar.org

ulisboa.pt

webpages.ciencias.ulisboa.pt