Energetically modified cement (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Energetically modified cement" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
18th place
17th place
11th place
8th place
low place
low place
4th place
4th place
5th place
5th place
3rd place
3rd place
low place
low place
3,588th place
3,072nd place
low place
low place
102nd place
76th place
4,298th place
4,354th place
916th place
706th place
621st place
380th place
1,031st place
879th place
670th place
480th place
2,932nd place
1,911th place
1,690th place
998th place
low place
low place
167th place
198th place
low place
low place
1st place
1st place
7,856th place
4,617th place
149th place
178th place
low place
low place
1,592nd place
1,119th place
low place
low place
6,213th place
3,969th place
538th place
863rd place
105th place
79th place
610th place
704th place
2,020th place
1,872nd place
3,306th place
3,189th place
26th place
20th place

amazon.com

  • Meyer, K (1968). Physikalisch-chemische Kristallographie. VEB Deutscher Verlag für Grundstoffindustrie. p. 337. ASIN B0000BSNEK.

archives-ouvertes.fr

hal.archives-ouvertes.fr

arizona.edu

rruff.geo.arizona.edu

astm.org

books.google.com

  • Mark Anthony Benvenuto (24 February 2015). Industrial Chemistry: For Advanced Students. De Gruyter. pp. 134–. ISBN 978-3-11-035170-5.
  • Jean-Pierre Bournazel; Yves Malier (1998). PRO 4: International RILEM Conference on Concrete: From Material to Structure. RILEM Publications. pp. 101–. ISBN 978-2-912143-04-4.
  • Danny Harvey (12 August 2010). Energy and the New Reality 1:Energy Efficiency and the Demand for Energy Services. Routledge. pp. 385–. ISBN 978-1-136-54272-5.

cam.ac.uk

www-fif.construction.cam.ac.uk

ceramics-silikaty.cz

diva-portal.org

ltu.diva-portal.org

diva-portal.org

doi.org

dot.gov

fhwa.dot.gov

elsevier.com

emccement.com

energy-transitions.org

handle.net

hdl.handle.net

harvard.edu

ui.adsabs.harvard.edu

ingentaconnect.com

iupac.org

goldbook.iupac.org

jstor.org

lowcarboncement.com

ltu.se

nih.gov

pubmed.ncbi.nlm.nih.gov

ncbi.nlm.nih.gov

routledge.com

rsc.org

pubs.rsc.org

s3-us-west-2.amazonaws.com

sciencedirect.com

semanticscholar.org

api.semanticscholar.org

understanding-cement.com

usbr.gov

usgs.gov

pubs.usgs.gov

utexas.edu

  •  Further notes on pozzolanic chemistry: (A) The ratio Ca/Si (or C/S) and the number of water molecules can vary, to vary C-S-H stoichiometry. (B) Often, crystalline hydrates are formed for example when tricalcium aluminiate reacts with dissolved calcium sulphate to form crystalline hydrates (3CaO·(Al,Fe)2O3·CaSO4·nH2O, general simplified formula). This is called an AFm ("alumina, ferric oxide, monosulphate") phase. (C) The AFm phase per se is not exclusive. On the one hand while sulphates, together with other anions such as carbonates or chlorides can add to the AFm phase, they can also cause an AFt phase where ettringite is formed (6CaO·Al2O3·3SO3·32H2O or C6S3H32). (D) Generally, the AFm phase is important in the further hydration process, whereas the AFt phase can be the cause of concrete failure known as DEF. DEF can be a particular problem in non-pozzolanic concretes (see, for ex., Folliard, K., et al., Preventing ASR/DEF in New Concrete: Final Report, TXDOT & U.S. FHWA:Doc. FHWA/TX-06/0-4085-5, Rev. 06/2006). (E) It is thought that pozzolanic chemical pathways utilising Ca2+ ions cause the AFt route to be relatively suppressed.

web.archive.org

webmineral.com

worldcat.org

search.worldcat.org

zenodo.org