Enobosarm (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Enobosarm" in English language version.

refsWebsite
Global rank English rank
4th place
4th place
2nd place
2nd place
11th place
8th place
5th place
5th place
1st place
1st place
102nd place
76th place
low place
7,595th place
3rd place
3rd place
447th place
338th place
56th place
42nd place
274th place
309th place
low place
low place
615th place
407th place
12th place
11th place
low place
low place
8,565th place
5,337th place
low place
7,039th place
1,182nd place
725th place
8,366th place
5,247th place
206th place
124th place
low place
low place
54th place
48th place
low place
low place
407th place
241st place
low place
8,828th place
low place
low place
low place
6,625th place
low place
low place
195th place
302nd place
18th place
17th place
2,326th place
1,246th place
34th place
27th place
2,972nd place
2,529th place
62nd place
304th place
431st place
274th place
20th place
30th place
low place
low place
low place
low place
147th place
97th place
8th place
10th place

athleticsintegrity.org

bbc.co.uk

bbc.com

biospace.com

bizjournals.com

books.google.com

  • Liang JY, Chang HC, Hsu GL (2018). "Penis Endocrinology". In Skinner MK (ed.). Encyclopedia of Reproduction. Elsevier Science. p. 376. ISBN 978-0-12-815145-7. Retrieved 23 December 2023.
  • Hohl A, Marcelli M (2023). "Androgen Receptor in Health and Disease". In Hohl A (ed.). Testosterone. Cham: Springer International Publishing. pp. 21–75. doi:10.1007/978-3-031-31501-5_2. ISBN 978-3-031-31500-8. Physiologically N/C interaction is indispensable because it delays ligand dissociation from the receptor, protects the ligand binding pocket, and prevents receptor degradation [118]. That N/C interaction is essential in AR physiology is demonstrated by the identification of AR LBD mutations resulting in androgen insensitivity syndromes (AIS) that disrupt N/C interaction without affecting the equilibrium binding affinity for the ligand [119, 120].

businesswire.com

cancernetwork.com

cardiff.ac.uk

orca.cardiff.ac.uk

doi.org

drugbank.com

go.drugbank.com

drugdevelopment-technology.com

espn.com

fda.gov

fiercebiotech.com

forbes.com

genengnews.com

globo.com

ge.globo.com

handle.net

hdl.handle.net

harvard.edu

ui.adsabs.harvard.edu

nfl.com

nih.gov

pubmed.ncbi.nlm.nih.gov

ncbi.nlm.nih.gov

pubchem.ncbi.nlm.nih.gov

  • "Enobosarm". PubChem. U.S. National Library of Medicine.

ohiolink.edu

rave.ohiolink.edu

outsourcing-pharma.com

patents.google.com

  • WO 2005120483, Dalton JT, Mille DD, Veverka KA, "Selective androgen receptor modulators and methods of use thereof", published 22 December 2005, assigned to University of Tennessee Research Foundation 

portico.org

access.portico.org

postandcourier.com

proquest.com

qub.ac.uk

pureadmin.qub.ac.uk

semanticscholar.org

api.semanticscholar.org

  • Kim J, Wang R, Veverka KA, Dalton JT (November 2013). "Absorption, distribution, metabolism and excretion of the novel SARM GTx-024 [(S)-N-(4-cyano-3-(trifluoromethyl)phenyl)-3-(4-cyanophenoxy)-2-hydroxy-2-methylpropanamide] in rats". Xenobiotica; the Fate of Foreign Compounds in Biological Systems. 43 (11): 993–1009. doi:10.3109/00498254.2013.788233. PMID 24074268. S2CID 6545249.
  • Coss CC, Jones A, Dalton JT (August 2016). "Pharmacokinetic drug interactions of the selective androgen receptor modulator GTx-024(Enobosarm) with itraconazole, rifampin, probenecid, celecoxib and rosuvastatin". Investigational New Drugs. 34 (4): 458–467. doi:10.1007/s10637-016-0353-8. PMID 27105861. S2CID 24200291.
  • Jones A, Coss CC, Steiner MS, Dalton JT (2013). "An overview on selective androgen receptor modulators: Focus on enobosarm". Drugs of the Future. 38 (5): 309–316. doi:10.1358/dof.2013.038.05.1970866. ISSN 0377-8282. S2CID 75202407.
  • Fonseca GW, Dworatzek E, Ebner N, Von Haehling S (August 2020). "Selective androgen receptor modulators (SARMs) as pharmacological treatment for muscle wasting in ongoing clinical trials". Expert Opinion on Investigational Drugs. 29 (8): 881–891. doi:10.1080/13543784.2020.1777275. PMID 32476495. S2CID 219174372. [...] to proceed with enobosarm into a phase III clinical trial in patients with sarcopenia, the FDA requested a cardiovascular safety study, which the manufacturer refused to undertake due to considerable costs and decided to test enobosarm in cancer cachexia patients in whom the FDA was more tolerant to the long-term cardiovascular side effects [67]. [...] Enobosarm promotes a similar anabolic response compared with DHT via muscle AR activation, [...] [35]. In a recent study with ovariectomized mice, the weight of the musculus gastrocnemius has been shown to be higher in all groups treated with ostarine as well as bone mineral density and bone biomechanical properties [15]. Moreover, the stimulation of reproductive organs with enobosarm seems to be less pronounced compared to testosterone administration [36] due to its partial agonist and antagonist effect on other androgen-dependent tissues such as prostate and seminal vesicles [37]. [...] In the POWER trials (POWER 1, NCT01355484 and POWER 2, NCT01355497; Table 1), double-blind, placebo-controlled, and multi-center phase III studies [40], patients with non-small-cell lung cancer were given 3 mg of enobosarm or placebo for five months. Despite a lower rate of decline in body weight in the group treated with enobosarm in POWER 1, patients increased LBM at day 84 and day 147 in POWER 1 (+0.41 kg) and POWER 2 (+0.47 kg) compared with patients receiving placebo. However, no physical function improvement has been reported in both studies [41].
  • Wu C, Kovac JR (October 2016). "Novel Uses for the Anabolic Androgenic Steroids Nandrolone and Oxandrolone in the Management of Male Health". Current Urology Reports. 17 (10): 72. doi:10.1007/s11934-016-0629-8. PMID 27535042. S2CID 43199715. Enobosarm has also been evaluated in two phase III clinical trials entitled Prevention and treatment Of muscle Wasting in patiEnts with Cancer 1 and 2 (POWER1 (NCT01355484) and POWER2 (NCT01355497)). [...] The co-primary endpoints of this trial were lean body mass (LBM) response and physical function response for enobosarm vs. placebo after 3 months of treatment. Beneficial effects on both LBM and physical function were found in POWER1, and benefit to LBM but equivocal effects on physical function were found in POWER2.
  • Choi SM, Lee BM (2015). "Comparative safety evaluation of selective androgen receptor modulators and anabolic androgenic steroids". Expert Opinion on Drug Safety. 14 (11): 1773–1785. doi:10.1517/14740338.2015.1094052. PMID 26401842. S2CID 8104778. Anabolic androgenic steroids (AASs) comprise synthetic derivatives of testosterone. AASs bind directly to the cytosolic androgen receptor (AR), which is widely distributed across reproductive and non-reproductive tissues, including the prostate, skeletal muscle, liver, skin, and central nervous system (CNS). This binding results in various physiological activities [1], the major one being a masculinizing effect in the skeletal muscle via muscle building [2].
  • Machek SB, Cardaci TD, Wilburn DT, Willoughby DS (December 2020). "Considerations, possible contraindications, and potential mechanisms for deleterious effect in recreational and athletic use of selective androgen receptor modulators (SARMs) in lieu of anabolic androgenic steroids: A narrative review". Steroids. 164: 108753. doi:10.1016/j.steroids.2020.108753. PMID 33148520. S2CID 225049089. Additionally, reported SARM-induced fat free mass increases are a mere fraction of that reported in modest doses of testosterone derivatives in similar timeframes (~1.5kg versus ~7kg in SARMs and testosterone, respectively) [21].
  • Mohler ML, Nair VA, Hwang DJ, Rakov IM, Patil R, Miller DD (2005-10-28). "Nonsteroidal tissue selective androgen receptor modulators: a promising class of clinical candidates". Expert Opinion on Therapeutic Patents. 15 (11). Informa Healthcare: 1565–1585. doi:10.1517/13543776.15.11.1565. ISSN 1354-3776. S2CID 96279138.
  • Coss CC, Jones A, Dalton JT (November 2014). "Selective androgen receptor modulators as improved androgen therapy for advanced breast cancer". Steroids. 90: 94–100. doi:10.1016/j.steroids.2014.06.010. PMID 24945109. S2CID 23450056.
  • Mertens JE, Bömmer MT, Regier MB, Gabriëls G, Pavenstädt H, Grünewald I, et al. (October 2023). "Liver Injury after Selective Androgen Receptor Modulator Intake: A Case Report and Review of the Literature". Zeitschrift für Gastroenterologie. doi:10.1055/a-2165-6323. PMID 37871633. S2CID 264426934.
  • Kassem L, Shohdy KS, Makady NF, Salem DS, Ebrahim N, Eldaly M (2019-11-16). "Efficacy and Safety of Targeting Androgen Receptor in Advanced Breast Cancer: A Systematic Review". Current Cancer Therapy Reviews. 15 (3): 197–206. doi:10.2174/1573394714666180821145032. S2CID 58234934. It is worth noting that SARMs were initially developed to get benefit of their anabolic effect on muscle and bone without much harm to other tissues. One randomized controlled trial [28], recruited male and females with cancer and weight loss showed that enobosarm 1 mg or 3 mg was associated with significant increase in lean body mass compared to placebo. This led to another ongoing trial, with more selection, aiming to evaluate enobosarm (with higher doses 9 or 18 mg) effect on physical function and lean body mass of ER+/AR+ breast cancer patients (NCT02463032). Such additional action of this class of drugs carries major hope for patients with AR-positive advanced breast cancer, where weight loss, muscle weakness and physical inactivity represent a big challenge for the patient's quality of life (QOL).
  • Zhang X, Sui Z (February 2013). "Deciphering the selective androgen receptor modulators paradigm". Expert Opinion on Drug Discovery. 8 (2): 191–218. doi:10.1517/17460441.2013.741582. PMID 23231475. S2CID 2584722. The structure and name of Ostarine (GTx-024, MK-2866, Enobosarm, S-22) were disclosed by the USAN Council in November 2011 to establish it as a first member of a new class of drugs furthest in clinical development (Structure 2 in Scheme 1).
  • Kim J, Wu D, Hwang DJ, Miller DD, Dalton JT (October 2005). "The para substituent of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamides is a major structural determinant of in vivo disposition and activity of selective androgen receptor modulators". The Journal of Pharmacology and Experimental Therapeutics. 315 (1): 230–239. doi:10.1124/jpet.105.088344. PMID 15987833. S2CID 30799845.
  • Dalton JT, Taylor RP, Mohler ML, Steiner MS (December 2013). "Selective androgen receptor modulators for the prevention and treatment of muscle wasting associated with cancer". Current Opinion in Supportive and Palliative Care. 7 (4): 345–351. doi:10.1097/SPC.0000000000000015. PMID 24189892. S2CID 35120033. Enobosarm was discovered in 2004 as a hyper-myoanabolic SARM that dissociated the anabolic from androgenic effects of AR in terms of potency (ED50) and efficacy (Emax) [29]. Levator ani muscle weight was increased to 131 and 136% of intact controls in intact and castrated (maintenance mode) rats, respectively, without significant increases in ventral prostate and seminal vesicles weights. Importantly, increases in levator ani muscle weight were associated with increases in muscle strength (soleus) in rats. Enobosarm also exerted in-vivo osteoanabolic effects alone and synergistically with alendronate in terms of bone density, strength, and structure [30], which was explained by in-vitro mechanistic studies that demonstrated antiresorptive (osteoclast inhibition) and anabolic (osteoblast differentiation) effects [31].
  • Xie Y, Tian Y, Zhang Y, Zhang Z, Chen R, Li M, et al. (February 2022). "Overview of the development of selective androgen receptor modulators (SARMs) as pharmacological treatment for osteoporosis (1998-2021)". European Journal of Medicinal Chemistry. 230: 114119. doi:10.1016/j.ejmech.2022.114119. PMID 35063736. S2CID 245941791. Similar to other N-arylpropionamide SARMs, in male rats treated for 14 days at 1 mg/day dose S-22 (17) exhibited increased levator ani muscle weight but significantly reduced prostate weight [...]
  • Bhasin S, Woodhouse L, Casaburi R, Singh AB, Bhasin D, Berman N, et al. (December 2001). "Testosterone dose-response relationships in healthy young men". American Journal of Physiology. Endocrinology and Metabolism. 281 (6): E1172 – E1181. doi:10.1152/ajpendo.2001.281.6.E1172. PMID 11701431. S2CID 2344757. The administration of the GnRH agonist plus graded doses of testosterone resulted in mean nadir testosterone concentrations of 253, 306, 542, 1,345, and 2,370 ng/dl at the 25-, 50-, 125-, 300-, and 600-mg doses, respectively. Fat-free mass increased dose dependently in men receiving 125, 300, or 600 mg of testosterone weekly (change +3.4, 5.2, and 7.9 kg, respectively). The changes in fat-free mass were highly dependent on testosterone dose (P = 0.0001) and correlated with log testosterone concentrations (r = 0.73, P = 0.0001).
  • Alén M, Rahkila P (December 1988). "Anabolic-androgenic steroid effects on endocrinology and lipid metabolism in athletes". Sports Medicine. 6 (6): 327–332. doi:10.2165/00007256-198806060-00001. PMID 3068771. S2CID 37898289.
  • Mohd Fauzi F, Koutsoukas A, Cunningham A, Gallegos A, Sedefov R, Bender A (July 2013). "Computer-aided (in silico) approaches in the mode-of-action analysis and safety assessment of ostarine and 4-methylamphetamine". Human Psychopharmacology. 28 (4): 365–378. doi:10.1002/hup.2322. PMID 23881885. S2CID 22800581.
  • Hwang DJ, He Y, Ponnusamy S, Mohler ML, Thiyagarajan T, McEwan IJ, et al. (January 2019). "New Generation of Selective Androgen Receptor Degraders: Our Initial Design, Synthesis, and Biological Evaluation of New Compounds with Enzalutamide-Resistant Prostate Cancer Activity". Journal of Medicinal Chemistry. 62 (2): 491–511. doi:10.1021/acs.jmedchem.8b00973. hdl:2164/13357. PMID 30525603. S2CID 54472127.
  • Corona G, Rastrelli G, Vignozzi L, Maggi M (June 2012). "Emerging medication for the treatment of male hypogonadism". Expert Opinion on Emerging Drugs. 17 (2): 239–259. doi:10.1517/14728214.2012.683411. PMID 22612692. S2CID 22068249.
  • Ricci F, Buzzatti G, Rubagotti A, Boccardo F (November 2014). "Safety of antiandrogen therapy for treating prostate cancer". Expert Opinion on Drug Safety. 13 (11): 1483–1499. doi:10.1517/14740338.2014.966686. PMID 25270521. S2CID 207488100. Bone-sparing effects of antiandrogen monotherapy might be due to selective AR modulators, tissue-specific and androgen-responsive, not affected by antiandrogen therapy, resulting in testosterone still being active in bone during non-steroidal antiandrogen administration [90].
  • Allan G, Lai MT, Sbriscia T, Linton O, Haynes-Johnson D, Bhattacharjee S, et al. (January 2007). "A selective androgen receptor modulator that reduces prostate tumor size and prevents orchidectomy-induced bone loss in rats". The Journal of Steroid Biochemistry and Molecular Biology. 103 (1): 76–83. doi:10.1016/j.jsbmb.2006.07.006. PMID 17049844. S2CID 25283876.
  • Wadhwa VK, Weston R, Parr NJ (June 2011). "Bicalutamide monotherapy preserves bone mineral density, muscle strength and has significant health-related quality of life benefits for osteoporotic men with prostate cancer". BJU International. 107 (12): 1923–1929. doi:10.1111/j.1464-410X.2010.09726.x. PMID 20950306. S2CID 205543615.
  • Pertusati F, Ferla S, Bassetto M, Brancale A, Khandil S, Westwell AD, et al. (October 2019). "A new series of bicalutamide, enzalutamide and enobosarm derivatives carrying pentafluorosulfanyl (SF5) and pentafluoroethyl (C2F5) substituents: Improved antiproliferative agents against prostate cancer". European Journal of Medicinal Chemistry. 180: 1–14. doi:10.1016/j.ejmech.2019.07.001. PMID 31288149. S2CID 195872311.
  • Yin D, Gao W, Kearbey JD, Xu H, Chung K, He Y, et al. (March 2003). "Pharmacodynamics of selective androgen receptor modulators". The Journal of Pharmacology and Experimental Therapeutics. 304 (3): 1334–1340. doi:10.1124/jpet.102.040840. PMID 12604714. S2CID 14724811.
  • Thevis M, Kohler M, Thomas A, Maurer J, Schlörer N, Kamber M, et al. (May 2008). "Determination of benzimidazole- and bicyclic hydantoin-derived selective androgen receptor antagonists and agonists in human urine using LC-MS/MS". Analytical and Bioanalytical Chemistry. 391 (1): 251–261. doi:10.1007/s00216-008-1882-6. PMID 18270691. S2CID 206899531.

sky.com

news.sky.com

springer.com

adisinsight.springer.com

  • "Enobosarm - GTx". Adis Insight. Springer Nature Switzerland AG. Retrieved 22 December 2023.

theguardian.com

thepharmaletter.com

uci.org

washingtonpost.com

web.archive.org

who.int

cdn.who.int

woodbine.com

worldcat.org

search.worldcat.org