Equivariant map (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Equivariant map" in English language version.

refsWebsite
Global rank English rank
451st place
277th place
3rd place
3rd place
2nd place
2nd place
26th place
20th place
1st place
1st place
2,527th place
1,840th place

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

  • Kimberling, Clark (1994), "Central Points and Central Lines in the Plane of a Triangle", Mathematics Magazine, 67 (3): 163–187, doi:10.2307/2690608, JSTOR 2690608, MR 1573021. "Similar triangles have similarly situated centers", p. 164.
  • The centroid is the only affine equivariant center of a triangle, but more general convex bodies can have other affine equivariant centers; see e.g. Neumann, B. H. (1939), "On some affine invariants of closed convex regions", Journal of the London Mathematical Society, Second Series, 14 (4): 262–272, doi:10.1112/jlms/s1-14.4.262, MR 0000978.
  • Fuchs, Jürgen; Schweigert, Christoph (1997), Symmetries, Lie algebras and representations: A graduate course for physicists, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, p. 70, ISBN 0-521-56001-2, MR 1473220.
  • Sexl, Roman U.; Urbantke, Helmuth K. (2001), Relativity, groups, particles: Special relativity and relativistic symmetry in field and particle physics, Springer Physics, Vienna: Springer-Verlag, p. 165, doi:10.1007/978-3-7091-6234-7, ISBN 3-211-83443-5, MR 1798479.
  • Segal, G. B. (1971), "Equivariant stable homotopy theory", Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris, pp. 59–63, MR 0423340.
  • Adhikari, Mahima Ranjan; Adhikari, Avishek (2014), Basic modern algebra with applications, New Delhi: Springer, p. 142, doi:10.1007/978-81-322-1599-8, ISBN 978-81-322-1598-1, MR 3155599.

books.google.com (Global: 3rd place; English: 3rd place)

doi.org (Global: 2nd place; English: 2nd place)

  • Kimberling, Clark (1994), "Central Points and Central Lines in the Plane of a Triangle", Mathematics Magazine, 67 (3): 163–187, doi:10.2307/2690608, JSTOR 2690608, MR 1573021. "Similar triangles have similarly situated centers", p. 164.
  • The centroid is the only affine equivariant center of a triangle, but more general convex bodies can have other affine equivariant centers; see e.g. Neumann, B. H. (1939), "On some affine invariants of closed convex regions", Journal of the London Mathematical Society, Second Series, 14 (4): 262–272, doi:10.1112/jlms/s1-14.4.262, MR 0000978.
  • Sexl, Roman U.; Urbantke, Helmuth K. (2001), Relativity, groups, particles: Special relativity and relativistic symmetry in field and particle physics, Springer Physics, Vienna: Springer-Verlag, p. 165, doi:10.1007/978-3-7091-6234-7, ISBN 3-211-83443-5, MR 1798479.
  • Adhikari, Mahima Ranjan; Adhikari, Avishek (2014), Basic modern algebra with applications, New Delhi: Springer, p. 142, doi:10.1007/978-81-322-1599-8, ISBN 978-81-322-1598-1, MR 3155599.

jstor.org (Global: 26th place; English: 20th place)

  • Kimberling, Clark (1994), "Central Points and Central Lines in the Plane of a Triangle", Mathematics Magazine, 67 (3): 163–187, doi:10.2307/2690608, JSTOR 2690608, MR 1573021. "Similar triangles have similarly situated centers", p. 164.

mcgill.ca (Global: 2,527th place; English: 1,840th place)

medicine.mcgill.ca

  • Sarle, Warren S. (September 14, 1997), Measurement theory: Frequently asked questions (Version 3) (PDF), SAS Institute Inc., archived from the original (PDF) on April 3, 2022, retrieved April 24, 2016. Revision of a chapter in Disseminations of the International Statistical Applications Institute (4th ed.), vol. 1, 1995, Wichita: ACG Press, pp. 61–66.

web.archive.org (Global: 1st place; English: 1st place)

  • Sarle, Warren S. (September 14, 1997), Measurement theory: Frequently asked questions (Version 3) (PDF), SAS Institute Inc., archived from the original (PDF) on April 3, 2022, retrieved April 24, 2016. Revision of a chapter in Disseminations of the International Statistical Applications Institute (4th ed.), vol. 1, 1995, Wichita: ACG Press, pp. 61–66.