Error function (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Error function" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
69th place
59th place
3rd place
3rd place
6th place
6th place
513th place
537th place
207th place
136th place
low place
low place
low place
low place
4,963rd place
7,139th place
621st place
380th place
9,852nd place
low place
1,523rd place
976th place
121st place
142nd place
703rd place
501st place
5th place
5th place
1,045th place
746th place
18th place
17th place
179th place
183rd place
1st place
1st place
3,671st place
2,607th place
1,475th place
1,188th place

academia.edu

archive.org

arxiv.org

  • Dominici, Diego (2006). "Asymptotic analysis of the derivatives of the inverse error function". arXiv:math/0607230.
  • Bergsma, Wicher (2006). "On a new correlation coefficient, its orthogonal decomposition and associated tests of independence". arXiv:math/0604627.
  • Tanash, I.M.; Riihonen, T. (2020). "Global minimax approximations and bounds for the Gaussian Q-function by sums of exponentials". IEEE Transactions on Communications. 68 (10): 6514–6524. arXiv:2007.06939. doi:10.1109/TCOMM.2020.3006902. S2CID 220514754.
  • Tanash, I.M.; Riihonen, T. (2021). "Improved coefficients for the Karagiannidis–Lioumpas approximations and bounds to the Gaussian Q-function". IEEE Communications Letters. 25 (5): 1468–1471. arXiv:2101.07631. doi:10.1109/LCOMM.2021.3052257. S2CID 231639206.
  • Zeng, Caibin; Chen, Yang Cuan (2015). "Global Padé approximations of the generalized Mittag-Leffler function and its inverse". Fractional Calculus and Applied Analysis. 18 (6): 1492–1506. arXiv:1310.5592. doi:10.1515/fca-2015-0086. S2CID 118148950. Indeed, Winitzki [32] provided the so-called global Padé approximation

auth.gr

users.auth.gr

books.google.com

  • Andrews, Larry C. (1998). Special functions of mathematics for engineers. SPIE Press. p. 110. ISBN 9780819426161.
  • Glaisher, James Whitbread Lee (July 1871). "On a class of definite integrals". London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 4. 42 (277): 294–302. doi:10.1080/14786447108640568. Retrieved 6 December 2017.
  • Glaisher, James Whitbread Lee (September 1871). "On a class of definite integrals. Part II". London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 4. 42 (279): 421–436. doi:10.1080/14786447108640600. Retrieved 6 December 2017.

doi.org

escholarship.org

gnu.org

harvard.edu

ui.adsabs.harvard.edu

mathematica-journal.com

opengroup.org

pubs.opengroup.org

psu.edu

citeseerx.ist.psu.edu

semanticscholar.org

api.semanticscholar.org

ssrn.com

stanford.edu

wsl.stanford.edu

unibo.it

campus.unibo.it

web.archive.org

wikipedia.org

de.wikipedia.org

wisc.edu

stat.wisc.edu

wolfram.com

mathworld.wolfram.com

worldcat.org

search.worldcat.org

zenodo.org