External ray (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "External ray" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
1st place
1st place
69th place
59th place
332nd place
246th place
18th place
17th place
11th place
8th place
9th place
13th place
low place
low place
low place
low place
9,785th place
9,347th place
low place
8,755th place
451st place
277th place
2,137th place
1,474th place
2,302nd place
1,389th place
low place
low place
2,594th place
2,546th place
3,707th place
2,409th place
513th place
537th place
low place
low place
low place
low place
low place
low place

ams.org

arxiv.org

  • Inou, Hiroyuki; Mukherjee, Sabyasachi (2016). "Non-landing parameter rays of the multicorns". Inventiones Mathematicae. 204 (3): 869–893. arXiv:1406.3428. Bibcode:2016InMat.204..869I. doi:10.1007/s00222-015-0627-3. S2CID 253746781.
  • Petersen, Carsten L.; Zakeri, Saeed (2020). "Periodic points and smooth rays". Conformal Geometry and Dynamics of the American Mathematical Society. 25 (8): 170–178. arXiv:2009.02788. doi:10.1090/ecgd/364.
  • Schleicher, Dierk (1997). "Rational parameter rays of the Mandelbrot set". arXiv:math/9711213.

cornell.edu

math.cornell.edu

pi.math.cornell.edu

cuny.edu

qcpages.qc.cuny.edu

dhushara.com

doi.org

  • Inou, Hiroyuki; Mukherjee, Sabyasachi (2016). "Non-landing parameter rays of the multicorns". Inventiones Mathematicae. 204 (3): 869–893. arXiv:1406.3428. Bibcode:2016InMat.204..869I. doi:10.1007/s00222-015-0627-3. S2CID 253746781.
  • Atela, Pau (1992). "Bifurcations of dynamic rays in complex polynomials of degree two". Ergodic Theory and Dynamical Systems. 12 (3): 401–423. doi:10.1017/S0143385700006854. S2CID 123478692.
  • Petersen, Carsten L.; Zakeri, Saeed (2020). "Periodic points and smooth rays". Conformal Geometry and Dynamics of the American Mathematical Society. 25 (8): 170–178. arXiv:2009.02788. doi:10.1090/ecgd/364.
  • Komori, Yohei; Nakane, Shizuo (2004). "Landing property of stretching rays for real cubic polynomials" (PDF). Conformal Geometry and Dynamics. 8 (4): 87–114. Bibcode:2004CGDAM...8...87K. doi:10.1090/s1088-4173-04-00102-x.
  • Bielefeld, B.; Fisher, Y.; Vonhaeseler, F. (1993). "Computing the Laurent Series of the Map Ψ: C − D → C − M". Advances in Applied Mathematics. 14: 25–38. doi:10.1006/aama.1993.1002.

dtu.dk

orbit.dtu.dk

harvard.edu

ui.adsabs.harvard.edu

  • Inou, Hiroyuki; Mukherjee, Sabyasachi (2016). "Non-landing parameter rays of the multicorns". Inventiones Mathematicae. 204 (3): 869–893. arXiv:1406.3428. Bibcode:2016InMat.204..869I. doi:10.1007/s00222-015-0627-3. S2CID 253746781.
  • Komori, Yohei; Nakane, Shizuo (2004). "Landing property of stretching rays for real cubic polynomials" (PDF). Conformal Geometry and Dynamics. 8 (4): 87–114. Bibcode:2004CGDAM...8...87K. doi:10.1090/s1088-4173-04-00102-x.

linas.org

mndynamics.com

mrob.com

northwestern.edu

math.northwestern.edu

pcliv.ac.uk

projecteuclid.org

semanticscholar.org

api.semanticscholar.org

  • Inou, Hiroyuki; Mukherjee, Sabyasachi (2016). "Non-landing parameter rays of the multicorns". Inventiones Mathematicae. 204 (3): 869–893. arXiv:1406.3428. Bibcode:2016InMat.204..869I. doi:10.1007/s00222-015-0627-3. S2CID 253746781.
  • Atela, Pau (1992). "Bifurcations of dynamic rays in complex polynomials of degree two". Ergodic Theory and Dynamical Systems. 12 (3): 401–423. doi:10.1017/S0143385700006854. S2CID 123478692.

sunysb.edu

math.sunysb.edu

titech.ac.jp

math.titech.ac.jp

uni-goettingen.de

gdz.sub.uni-goettingen.de

web.archive.org

wolfram.com

mathworld.wolfram.com

youtube.com