Analysis of information sources in references of the Wikipedia article "Falcon 9 first-stage landing tests" in English language version.
[The] partnership between NASA and SpaceX is giving the U.S. space agency an early look at what it would take to land multi-ton habitats and supply caches on Mars for human explorers, while providing sophisticated infrared (IR) imagery to help the spacecraft company develop a reusable launch vehicle. After multiple attempts, airborne NASA and U.S. Navy IR tracking cameras ... captured a SpaceX Falcon 9 in flight as its first stage [fell] back toward Earth shortly after second-stage ignition and then reignit[ed] to lower the stage toward a propulsive "zero-velocity, zero-altitude" touchdown on the sea surface.
The April 17 F9R Dev 1 flight, which lasted under 1 min., was the first vertical landing test of a production-representative recoverable Falcon 9 v1.1 first stage, while the April 18 cargo flight to the ISS was the first opportunity for SpaceX to evaluate the design of foldable landing legs and upgraded thrusters that control the stage during its initial descent.
The first successful "soft landing" of a Falcon 9 rocket happened in April of this year
Having previously suggested that SpaceX would like to re-fly a Falcon 9 first stage by the end of the year, Musk surprised nearly everyone by confidently asserting that the time frame was instead late May or more realistically June. Moreover, the odds were favorable that it would be a paying launch.
Falcon lands on droneship, but the lockout collet doesn't latch on one the four legs, causing it to tip over post landing. Root cause may have been ice buildup due to condensation from heavy fog at liftoff.
Approximately 157 seconds into flight, the first-stage engines are shut down, an event known as main-engine cutoff, or MECO. At this point, Falcon 9 is 80 kilometers (50 miles) high, traveling at 10 times the speed of sound.
At this point, we are highly confident of being able to land successfully on a floating launch pad or back at the launch site and refly the rocket with no required refurbishment
While the Falcon 9's second stage continues to orbit with the Dragon spacecraft, its first stage will execute a series of maneuvers which SpaceX hope will culminate in a successful landing atop a floating platform off the coast of Florida. The demonstration follows successful tests during two previous launches where the first stage has been guided to a controlled water landing, however the stage has not been recoverable on either previous attempt. ... Achieving a precision landing on a floating platform is an important milestone for SpaceX as they attempt to demonstrate their planned flyback recovery of the first stage of the Falcon 9.
To space and back, in less than nine minutes? Hello, future.
Musk: 'Rocket first stage reentry, landing burn & leg deploy were good, but lost hull integrity right after splashdown (aka kaboom) ... Detailed review of rocket telemetry needed to tell if due to initial splashdown or subsequent tip over and body slam.'
Q. What is strategy on first stage recover? Musk: Initial recovery test will be a water landing. First stage continue in ballistic arc and execute a velocity reduction burn before it enters atmosphere to lessen impact. Right before splashdown, will light up the engine again. Emphasizes that we don't expect success in the first several attempts. Hopefully next year with more experience and data, we should be able to return the first stage to the launch site and do a propulsion landing on land using legs. Q. Is there a flight identified for return to launch site of the first stage? Musk: No. Will probably be the middle of next year.
{{cite web}}
: CS1 maint: numeric names: authors list (link)A key upgrade to enable precision targeting of the Falcon 9 all the way to touchdown is the addition of four hypersonic grid fins placed in an X-wing configuration around the vehicle, stowed on ascent and deployed on reentry to control the stage's lift vector. Each fin moves independently for roll, pitch and yaw, and combined with the engine gimbaling, will allow for precision landing – first on the autonomous spaceport drone ship, and eventually on land.
SpaceX is counting on lower launch costs to increase demand for launch services. But Foust cautions that this strategy comes with risk. 'It's worth noting,' he says, 'that many current customers of launch services, including operators of commercial satellites, aren't particularly price sensitive, so thus aren't counting on reusability to lower costs.' That means those additional launches, and thus revenue, may have to come from markets that don't exist yet. 'A reusable system with much lower launch costs might actually result in lower revenue for that company unless they can significantly increase demand,' says Foust. 'That additional demand would likely have to come from new markets, with commercial human spaceflight perhaps the biggest and best-known example.'
We managed to re-enter the atmosphere, not break up like we normally do, and get all way down to sea level.
[The] partnership between NASA and SpaceX is giving the U.S. space agency an early look at what it would take to land multi-ton habitats and supply caches on Mars for human explorers, while providing sophisticated infrared (IR) imagery to help the spacecraft company develop a reusable launch vehicle. After multiple attempts, airborne NASA and U.S. Navy IR tracking cameras ... captured a SpaceX Falcon 9 in flight as its first stage [fell] back toward Earth shortly after second-stage ignition and then reignit[ed] to lower the stage toward a propulsive "zero-velocity, zero-altitude" touchdown on the sea surface.
To space and back, in less than nine minutes? Hello, future.
A key upgrade to enable precision targeting of the Falcon 9 all the way to touchdown is the addition of four hypersonic grid fins placed in an X-wing configuration around the vehicle, stowed on ascent and deployed on reentry to control the stage's lift vector. Each fin moves independently for roll, pitch and yaw, and combined with the engine gimbaling, will allow for precision landing – first on the autonomous spaceport drone ship, and eventually on land.
Approximately 157 seconds into flight, the first-stage engines are shut down, an event known as main-engine cutoff, or MECO. At this point, Falcon 9 is 80 kilometers (50 miles) high, traveling at 10 times the speed of sound.
Falcon lands on droneship, but the lockout collet doesn't latch on one the four legs, causing it to tip over post landing. Root cause may have been ice buildup due to condensation from heavy fog at liftoff.